题目内容

18.关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是①③(填序号).

分析 分别讨论m=0和m≠0时方程mx2+x-m+1=0根的情况,进而填空.

解答 解:当m=0时,x=-1,方程只有一个解,①正确;
当m≠0时,方程mx2+x-m+1=0是一元二次方程,△=1-4m(1-m)=1-4m+4m2=(2m-1)2≥0,方程有两个实数解,②错误;
把mx2+x-m+1=0分解为(x+1)(mx-m+1)=0,
当x=-1时,m-1-m+1=0,即x=-1是方程mx2+x-m+1=0的根,③正确;
故答案为①③.

点评 本题主要考查了根的判别式以及一元一次方程的解的知识,解答本题的关键是掌握根的判别式的意义以及分类讨论的思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网