题目内容

9.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.△CDF可以看作是将△BCE绕正方形ABCD的中心O按逆时针方向旋转得到.则旋转的角度为90°.

分析 根据旋转性质得出旋转后C到D,只要根据正方形的性质和三角形的内角和定理求出∠COD即可.

解答 解:将△CBE绕正方形的对角线交点O按顺时针方向旋转到△CDF时,C和D重合,
即∠COD是旋转角,
∵四边形ABCD是正方形,
∴∠OCD=∠ODC=45°,
∴∠COD=180°-45°-45°=90°,
即旋转角是90°,
故答案为90.

点评 本题主要考查了旋转的性质,以及正多边形的性质,正确理解正多边形的性质以及旋转角(对应点与旋转中心所连线段的夹角等于旋转角)是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网