题目内容
抛物线y=-的顶点是(m,3),则m= ,c= .
-1
某人用如下方法测一钢管的内径:将一小段钢管竖直放在平台上.向内放入两个半径为5 cm的钢球,测得上面一个钢球的最高点到底面的距离DC=16 cm(钢管的轴截面如图3-132所示),则钢管的内径AD的长为 cm.
如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE.
(1)求证:BE=CE;
(2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.
抛物线y=-3x2+2x-l的图象与坐标轴的交点个数是 ( )
A.无交点 B.1个 C.2个 D.3个
二次函数y=ax2+bx+c的图象向下平移1个单位长度,再向左平移2个单位长度,所得新抛物线的解析式为y=-3x2,则a+b+c等于 ( )
A.-3 B.- 2 C.2 D.±2
二次函数y=(a-1)x2-2x+1的图象与x轴相交,则a .
如图2 - 147所示,在边长为a的等边三角形ABC中作内接矩形EFGH,使F,G在BC边上,E,H分别在AB,AC边上,求这个矩形的面积S的最大值.
如图3-208所示,在⊙O中,直径MN=10,正方形ABCD的四个顶点分别在PM以及⊙O的半径OM,OP上,并且∠POM=45°,则AB的长为 .
下列运算正确的是( )
A.3a+2a=5a2 B.(2a)3=6a3
C.(x+1)2=x2+1 D.x2-4=(x+2)(x-2)