题目内容
分解因式:a2﹣4b2= ;
(a+2b)(a﹣2b)
定义新运算:对于任意实数a,b(其中a≠0),都有a⊗b=,等式右边是通常的加法、减法及除法运算,比如:2⊗1==0
(1)求5⊗4的值;
(2)若x⊗2=1(其中x≠0),求x的值是多少?
若分式的值为零,则x的取值为( )
A.x≠3 B.x≠﹣3 C.x=3 D.x=﹣3
因式分解
4a2﹣25b2
若3x=4,9y=7,则3x﹣2y的值为 .
下列各式中,不能用平方差公式计算的是( )
A.(﹣x﹣y)(x﹣y) B.(﹣x+y)(﹣x﹣y) C.(x+y)(﹣x+y) D.(x﹣y)(﹣x+y)
.数学活动课上,老师提出这样一个问题:如果AB=BC,∠ABC=60°,∠APC=30°,连接PB,那么PA、PB、PC之间会有怎样的等量关系呢?经过思考后,部分同学进行了如下的交流:
小蕾:我将图形进行了特殊化,让点P在BA延长线上(如图1),得到了一个猜想:PA2+PC2=PB2.
小东:我假设点P在∠ABC的内部,根据题目条件,这个图形具有“共端点等线段”的特点,可以利用旋转解决问题,旋转△PAB后得到△P′CB,并且可推出△PBP′,△PCP′分别是等边三角形、直角三角形,就能得到猜想和证明方法.
这时老师对同学们说,请大家完成以下问题:
(1)如图2,点P在∠ABC的内部,
①PA=4,PC=,PB= .
②用等式表示PA、PB、PC之间的数量关系,并证明.
(2)对于点P的其他位置,是否始终具有②中的结论?若是,请证明;若不是,请举例说明.
已知三角形的面积一定,则它底边a上的高h与底边a之间的函数关系的图象大致是( )
A. B. C. D.
如图,某校数学兴趣小组为测得大厦AB的高度,在大厦前的平地上选择一点C,测得大厦顶端A的仰角为30°,再向大厦方向前进80米,到达点D处(C、D、B三点在同一直线上),又测得大厦顶端A的仰角为45°,请你计算该大厦的高度.(精确到0.1米,参考数据:≈1.414,≈1.732)