题目内容

根据下列表格的对应值:

判断方程 ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的取值范围是( )

A. 3<x<3.23 B. 3.23<x<3.24 C. 3.24<x<3.25 D. 3.25<x<3.26

C 【解析】【解析】 函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,函数y=ax2+bx+c的图象与x轴的交点的纵坐标为0; 由表中数据可知:y=0在y=﹣0.02与y=0.03之间,∴对应的x的值在3.24与3.25之间,即3.24<x<3.25.故选C.
练习册系列答案
相关题目

如图,在△ABC中,∠B≠∠C.求证:AB≠AC.

见解析 【解析】试题分析:首先假设AB=AC,从而得出与已知条件矛盾,从而得出答案. 试题解析:假设AB=AC, 则∠B=∠C,∴与已知矛盾,∴AB≠AC.

如图,已知抛物线y=-x2+bx+c与x轴的两个交点分别为A(x1,0),B(x2,0) , 且x1+x2=4, .

(1)求抛物线的代数表达式;

(2)设抛物线与y轴交于C点,求直线BC的表达式;

(3)求△ABC的面积.

(1)该抛物线的代数表达式为y=-x2+4x-3;(2)直线BC的代数表达式为y=x-3;(3)S△ABC=3. 【解析】试题分析:(1)先解方程组, 求得x1、x2的值,再代入抛物线y=-x2+bx+c即可求得抛物线的代数表达式; (2)设直线BC的表达式为y=kx+m,先求得抛物线与y轴的交点坐标,再根据待定系数法即可求得直线BC的表达式; (3)分别求出AB、OC的长,再根...

已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为_____.

x1=4,x2=﹣2 【解析】试题分析:由二次函数y=﹣x2+2x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+2x+m=0的解. 【解析】 依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0), ∴抛物线...

如图,矩形ABCD的两边长AB=18cm,AD=4cm.点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,设运动时间为x秒,△PBQ的面积为y(cm2).

(1)求y关于x的函数关系式,并写出x的取值范围;

(2)求△PBQ的面积的最大值.

(1)y=-x2+9x(0<x≤4);(2)△PBQ的面积的最大值是20cm2. 【解析】试题分析:(1)分别表示出PB、BQ的长,然后根据三角形的面积公式列式整理即可得解; (2)把函数关系式整理成顶点式解析式,然后根据二次函数的最值问题解答. 试题解析:(1)∵S△PBQ=PB·BQ, PB=AB-AP=18-2x, BQ=x, ∴y= (18-2x)x,...

请选择一组你喜欢的a、b、c的值,使二次函数y=ax2+bx+c(a≠0)的图象同时满足下列条件:(1)开口向下;(2)当x<2时,y随x的增大而增大;当x>2时,y随x的增大而减小,这样的二次函数的解析式可以是____________.

答案不唯一,只要满足b=-4a,a<0即可,如y=-x2+4x+3,y=-2x2+8x-3等. 【解析】试题分析:仔细分析题中要求根据二次函数的性质即可得到结果. 答案不唯一,如y=-(x+1)2或y=-(x+1)2-2.

抛物线y=2(x-3)2+1的顶点坐标是( )

A. (3,1) B. (3,-1) C. (-3,1) D. (-3,-1)

A 【解析】利用抛物线顶点式的特点直接写出顶点坐标是(h,k),可知抛物线y=2(x-3)2+1的顶点坐标是(3,1). 故选:A.

在二次函数①y=3x2;②中,图象在同一水平线上的开口大小顺序用题号表示应该为( )

A. ①>②>③ B. ①>③>②

C. ②>③>① D. ②>①>③

C 【解析】根据二次函数的性质,可知系数a决定开口方向和开口大小,且a的值越大开口越小,因此可知②>③>①. 故选:C.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网