题目内容

15.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是(  )
A.10B.8$\sqrt{2}$C.4$\sqrt{13}$D.2$\sqrt{41}$

分析 如图连接BM、OM,AM,作MH⊥BC于H,先证明四边形OAMH是矩形,根据垂径定理求出HB,在RT△AOM中求出OM即可.

解答 解:如图连接BM、OM,AM,作MH⊥BC于H.

∵⊙M与x轴相切于点A(8,0),
∴AM⊥OA,OA=8,
∴∠OAM=∠MH0=∠HOA=90°,
∴四边形OAMH是矩形,
∴AM=OH,
∵MH⊥BC,
∴HC=HB=6,
∴OH=AM=10,
在RT△AOM中,OM=$\sqrt{A{M}^{2}+O{A}^{2}}$=$\sqrt{{8}^{2}+1{0}^{2}}$=2$\sqrt{41}$.
故选D.

点评 本题考查切线的性质、坐标与图形性质、垂径定理、勾股定理等知识,解题的关键是正确添加辅助线,构造直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网