题目内容
如图,平行四边形中,对角线相交于点,点是的中点,若,则的长为 ( )
A. 4cm B. 3cm C. 6cm D. 8cm
为了“绿化环境,美化家园”,3月12日(植树节)上午8点,某校901、902班同学同时参加义务植树.901班同学始终以同一速度种植树苗,种植树苗的棵数y1与种植时间x(小时)的函数图象如图所示;902班同学开始以1小时种植40棵的速度工作了1.5小时后,因需更换工具而停下休息半小时,更换工具后种植速度提高至原来的1.5倍.
(1)求902班同学上午11点时种植的树苗棵数;
(2)分别求出901班种植数量y1、902班种植数量y2与种植时间x(小时)之间的函数关系式,并在所给坐标系上画出y2关于x的函数图象;
(3)已知购买树苗不多于120棵时,每棵树苗的价格是20元;购买树苗超过120棵时,超过的部分每棵价格17元.若本次植树所购树苗的平均成本是18元,则两班同学上午几点可以共同完成本次植树任务?
【答案】(1)120棵;(2)见解析;(3)两班同学上午12点可以共同完成本次植树任务.
【解析】分析:直接进行计算即可.
用待定系数法求一次函数解析式即可, 902班的要分成3段.
当x=2时,两班同学共植树150棵,平均成本:不符合题意;,x>2,两班共植树(105x-60)棵.列出方程 求解即可.
详【解析】(1)902班同学上午11点时种植的树苗棵数为:
(棵)
(2)由图可知,y1是关于x的正比例函数,可设y1=k1x,经过(4,180),
代入可得
∴(x≥0),
,
y2关于x的函数图象如图所示.
(3)当x=2时,两班同学共植树150棵,
平均成本:
所以,x>2,两班共植树(105x-60)棵.
由题意可得:
解得:x=4.
所以,两班同学上午12点可以共同完成本次植树任务.
点睛:考查了待定系数法求一次函数解析式,一元一次方程的应用,注意分类讨论
的数学思想方法.
【题型】解答题【结束】23
在等腰直角△ABC中,,AC=BC,点P在斜边AB上(AP>BP).作AQ⊥AB,且AQ=BP,连结CQ(如图1).
(1)求证:△ACQ≌△BCP;
(2)延长QA至点R,使得∠RCP=45°,RC与AB交于点H,如图2.
①求证:CQ2=QA·QR ;
②判断三条线段AH、HP、PB的长度满足的数量关系,并说明理由.
已知一个样本容量为50,在频数分布直方图中,各小长方形的高比为2:3:4:1,那么第二组的频数是( )
A. 10 B. 20 C. 15 D. 5
如图,直线y=x+4与x轴、y轴分别交于A、B两点,点C在OB上,若将△ABC沿AC折叠,使点B恰好落在x轴上的点D处,则点C的坐标是_____.
菱形OABC在平面直角坐标系中的位置如图所示顶点A(5,0),OB=,P是对角线OB上的一个动点,D(0,1),当CP+DP的值最小时,点P的坐标为( )
A. (,3) B. (,) C. (1,) D. (,)
端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m(0<m<1)元.
(1)零售单价下降m元后,该店平均每天可卖出___只粽子,利润为___元;
(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元,并且卖出的粽子更多?
如图,△ACE是以平行四边形ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称,CE交x轴于点H.若E点的坐标是(7,一3),则D点的坐标是__________.
我们称使得成立的一对数为“相伴数对”,记为.
(1)若是“相伴数对”,求的值.
(2)若是“相伴数对”,用的式子表示.
(3)若是“相伴数对”,求代数式的值.
圆心角为120°,半径为6cm的扇形的弧长是___________cm,面积为___________cm2。(结果保留π)