题目内容

为了“绿化环境,美化家园”,3月12日(植树节)上午8点,某校901、902班同学同时参加义务植树.901班同学始终以同一速度种植树苗,种植树苗的棵数y1与种植时间x(小时)的函数图象如图所示;902班同学开始以1小时种植40棵的速度工作了1.5小时后,因需更换工具而停下休息半小时,更换工具后种植速度提高至原来的1.5倍.

(1)求902班同学上午11点时种植的树苗棵数;

(2)分别求出901班种植数量y1、902班种植数量y2与种植时间x(小时)之间的函数关系式,并在所给坐标系上画出y2关于x的函数图象;

(3)已知购买树苗不多于120棵时,每棵树苗的价格是20元;购买树苗超过120棵时,超过的部分每棵价格17元.若本次植树所购树苗的平均成本是18元,则两班同学上午几点可以共同完成本次植树任务?

【答案】(1)120棵;(2)见解析;(3)两班同学上午12点可以共同完成本次植树任务.

【解析】分析:直接进行计算即可.

用待定系数法求一次函数解析式即可, 902班的要分成3段.

当x=2时,两班同学共植树150棵,平均成本:不符合题意;,x>2,两班共植树(105x-60)棵.列出方程 求解即可.

详【解析】
(1)902班同学上午11点时种植的树苗棵数为:

(棵)

(2)由图可知,y1是关于x的正比例函数,可设y1=k1x,经过(4,180),

代入可得

(x≥0),

,

y2关于x的函数图象如图所示.

(3)当x=2时,两班同学共植树150棵,

平均成本:

所以,x>2,两班共植树(105x-60)棵.

由题意可得:

解得:x=4.

,

所以,两班同学上午12点可以共同完成本次植树任务.

点睛:考查了待定系数法求一次函数解析式,一元一次方程的应用,注意分类讨论

的数学思想方法.

【题型】解答题
【结束】
23

在等腰直角△ABC中,,AC=BC,点P在斜边AB上(AP>BP).作AQ⊥AB,且AQ=BP,连结CQ(如图1).

(1)求证:△ACQ≌△BCP;

(2)延长QA至点R,使得∠RCP=45°,RC与AB交于点H,如图2.

①求证:CQ2=QA·QR ;

②判断三条线段AH、HP、PB的长度满足的数量关系,并说明理由.

练习册系列答案
相关题目

下图是由边长为1个单位长度的小正方形组成的网格,线段AB的端点在格点上.

(1)请建立适当的平面直角坐标系xOy,使得A点的坐标为(-3,-1),在此坐标系下,B点的坐标为________________;

(2)将线段BA绕点B逆时针旋转90°得线段BC,画出BC;在第(1)题的坐标系下,C点的坐标为__________________;

(3)在第(1)题的坐标系下,二次函数y=ax2+bx+c(a≠0)的图象过O、B、C三点,则此函数图象的对称轴方程是________________.

【答案】 (-1,2) (2,0) x=1

【解析】分析:根据点的坐标建立坐标系,即可写出点的坐标.

画出点旋转后的对应点连接,写出点的坐标.

用待定系数法求出函数解析式,即可求出对称轴方程.

详【解析】
(1)建立坐标系如图,

B点的坐标为

(2)线段BC如图,C点的坐标为

(3)把点代入二次函数,得

解得:

二次函数解析为:

对称轴方程为:

故对称轴方程是

点睛:考查图形与坐标;旋转、对称变换;待定系数法求二次函数解析式,二次函数的图象与性质.熟练掌握各个知识点是解题的关键.

【题型】解答题
【结束】
18

特殊两位数乘法的速算——如果两个两位数的十位数字相同,个位数字相加为10,那么能立说出这两个两位数的乘积.如果这两个两位数分别写作AB和AC(即十位数字为A,个位数字分别为B、C,B+C=10,A>3),那么它们的乘积是一个4位数,前两位数字是A和(A+1)的乘积,后两位数字就是B和C的乘积.

如:47×43=2021,61×69=4209.

(1)请你直接写出83×87的值;

(2)设这两个两位数的十位数字为x(x>3),个位数字分别为y和z(y+z=10),通过计算验证这两个两位数的乘积为100x(x+1)+yz.

(3)99991×99999=___________________(直接填结果)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网