题目内容

6.如图,△ABC是等边三角形,D、E在BC边所在的直线上,且BC2=BD•CE.
(1)求∠DAE的度数.
(2)求证:AD2=DB•DE.

分析 (1)根据等边三角形的性质得到∠ABC=∠ACB=60°,利用等角的补角相等得到∠ABD=∠ACE,然后把题中已知的等式化为比例的形式,根据两边对应成比例,且夹角对应相等的两三角形相似即可得证;
(2)由于∠DAE=∠ADB=120°,∠D=∠D,推出△ABD∽△EAD根据相似三角形的性质得到$\frac{AD}{DE}=\frac{DB}{AD}$,即可得到结论.

解答 证明:(1)∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,AB=AC=BC,
∴∠ABD=∠ACE,
∵BC2=BD•CE,
∴AB•AC=BD•CE,
即$\frac{AB}{BD}=\frac{CE}{AC}$,
∴△ABD∽△ECA;
∴∠DAB=∠E,
∴∠DAE=∠DAB+∠BAC+∠EAC=120°;

(2)∵∠DAE=∠ADB=120°,∠D=∠D,
∴△ABD∽△EAD
∴$\frac{AD}{DE}=\frac{DB}{AD}$,
∴AD2=DB•DE.

点评 本题考查了等边三角形性的性质以及相似三角形的判定,证明三角形相似的方法有:①两角对应相等两三角形相似;②两边对应成比例,且夹角对应相等两三角形相似;③三边对应成比例两三角形相似.做题时要根据已知的条件,选择合适的方法.把AB•AC=BD•CE化为比例的形式,得到两三角形的对应边成比例是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网