题目内容
考点:平行线的性质
专题:
分析:过点B作BF∥AD,根据平行公理可得BF∥CE,再根据两直线平行,内错角相等可得∠ABF=∠A,∠CBF=∠C,然后根据∠ABC=∠ABF+∠CBF代入数据计算即可得解.
解答:
解:如图,过点B作BF∥AD,
则∠ABF=∠A,
∵AD∥CE,
∴BF∥CE,
∴∠CBF=∠C,
∴∠ABC=∠ABF+∠CBF=∠A+∠C,
∵∠A=38°,∠C=44°,
∴∠ABC=38°+44°=82°.
故答案为:82°.
则∠ABF=∠A,
∵AD∥CE,
∴BF∥CE,
∴∠CBF=∠C,
∴∠ABC=∠ABF+∠CBF=∠A+∠C,
∵∠A=38°,∠C=44°,
∴∠ABC=38°+44°=82°.
故答案为:82°.
点评:本题考查了平行线的性质,此类题目,过拐点作辅助线是解题的关键.
练习册系列答案
相关题目
使分式
有意义,x的取值范围是( )
| x+2 |
| x+3 |
| A、x≠3 | B、x≠-3 |
| C、x>-2 | D、x<2 |
随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占为7×10-7平方毫米,这个数用小数表示为( )
| A、0.000007 |
| B、0.000070 |
| C、0.0000700 |
| D、0.0000007 |