题目内容

17.在平面直角坐标系xOy中,已知抛物线C:y=mx2+4x+1.当直线y=-x+1与直线y=x+3关于抛物线C的对称轴对称时,则m的值为2.

分析 先求出直线y=-x+1与直线y=x+3的交点,即可得出其对称轴,根据抛物线的对称轴方程求出m的值即可.

解答 解:∵直线y=-x+1与直线y=x+3的交点为(-1,2),
∴两直线的对称轴为直线x=-1.
∵直线y=-x+1与直线y=x+3关于抛物线C:y=mx2+4x+1的对称轴对称,
∴-$\frac{4}{2m}$=-1,解得m=2.
故答案为2.

点评 本题考查的是二次函数的性质,轴对称的性质,求出直线y=-x+1与直线y=x+3的交点坐标是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网