题目内容

3.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,连接EF交AD于G.下列结论:①AD垂直平分EF;②EF垂直平分AD;③AD平分∠EDF;④当∠BAC为60°时,AG=3DG,其中不正确的结论的个数为(  )
A.1B.2C.3D.4

分析 根据角平分线性质求出DE=DF,证△AED≌△AFD,推出AE=AF,再逐个判断即可.

解答 解:∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,
∴DE=DF,∠AED=∠AFD=90°,
在Rt△AED和Rt△AFD中,
$\left\{\begin{array}{l}{AD=AD}\\{DE=DF}\end{array}\right.$,
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,∠ADE=∠ADF,
∴AD平分∠EDF;③正确;
∵AD平分∠BAC,
∵AE=AF,DE=DF,
∴AD垂直平分EF,①正确;②错误,
∵∠BAC=60°,
∴∠DAG=30°,
∴AG=$\frac{\sqrt{3}}{2}$AE,AD=$\frac{2\sqrt{3}}{3}$AE,
∴DG=$\frac{\sqrt{3}}{6}$AE,
∴AG=3DG,④正确.
故选A.

点评 本题考查了全等三角形的性质和判定,正方形的判定,角平分线性质的应用,能求出Rt△AED≌Rt△AFD是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网