ÌâÄ¿ÄÚÈÝ
19£®Èçͼ¢Ù£¬ÓÐ×ã¹»¶àµÄ±ß³¤ÎªaµÄСÕý·½ÐΣ¨AÀࣩ¡¢³¤Îªa¿íΪbµÄ³¤·½ÐΣ¨BÀࣩÒÔ¼°±ß³¤ÎªbµÄ´óÕý·½ÐΣ¨CÀࣩ£¬·¢ÏÖÀûÓÃͼ¢ÙÖеÄÈýÖÖ²ÄÁϸ÷Èô¸É¿ÉÒÔÆ´³öһЩ³¤·½ÐÎÀ´½âÊÍijЩµÈʽ£® ±ÈÈçͼ¢Ú¿ÉÒÔ½âÊÍΪ£º£¨a+2b£©£¨a+b£©=a2+3ab+2b2£¨1£©È¡Í¼¢ÙÖеÄÈô¸É¸ö£¨ÈýÖÖͼÐζ¼ÒªÈ¡µ½£©Æ´³ÉÒ»¸ö³¤·½ÐΣ¬Ê¹ÆäÃæ»ýΪ£¨2a+b£©£¨a+2b£©£¬ÔÚÈçͼ¢ÜÐé¿òÖл³öͼÐΣ¬²¢¸ù¾ÝͼÐλشð£¨2a+b£©£¨a+2b£©=2a2+5ab+2b2£®
£¨2£©ÈôÈ¡ÆäÖеÄÈô¸É¸ö£¨ÈýÖÖͼÐζ¼ÒªÈ¡µ½£©Æ´³ÉÒ»¸ö³¤·½ÐΣ¬Ê¹ÆäÃæ»ýΪa2+5ab+6b2£®
¢ÙÄ㻵ÄͼÖÐÐèCÀ࿨Ƭ6ÕÅ£®
¢Ú¿É½«¶àÏîʽa2+5ab+6b2·Ö½âÒòʽΪ£¨a+2b£©£¨a+3b£©
£¨3£©Èçͼ¢Û£¬´óÕý·½Ðεı߳¤Îªm£¬Ð¡Õý·½Ðεı߳¤Îªn£¬ÈôÓÃx¡¢y±íʾËĸö¾ØÐεÄÁ½±ß³¤£¨x£¾y£©£¬¹Û²ìͼ°¸²¢Åжϣ¬½«ÕýÈ·¹ØÏµÊ½µÄÐòºÅÌîдÔÚºáÏßÉϢ٢ڢۢܣ¨ÌîдÐòºÅ£©
¢Ùxy=$\frac{{m}^{2}-{n}^{2}}{4}$ ¢Úx+y=m ¢Ûx2-y2=m•n ¢Üx2+y2=$\frac{{m}^{2}+{n}^{2}}{2}$£®
·ÖÎö £¨1£©¸ù¾ÝÌâÒ⻳öͼÐΣ¬ÈçͼËùʾ£¬¼´¿ÉµÃµ½½á¹û£®
£¨2£©¸ù¾ÝµÈʽ¼´¿ÉµÃ³öÓÐ6ÕÅ£¬¸ù¾ÝͼÐκÍÃæ»ý¹«Ê½µÃ³ö¼´¿É£»
£¨3£©¸ù¾ÝÌâÒâµÃ³öx+y=m£¬m2-n2=4xy£¬¸ù¾Ýƽ·½²î¹«Ê½ºÍÍêȫƽ·½¹«Ê½Åжϼ´¿É£®
½â´ð ½â£º£¨1£©£¨2a+b£©£¨a+2b£©=2a2+5ab+2b2£¬
¹Ê´ð°¸Îª£º2a2+5ab+2b2£»
£¨2£©¢Ù¡ß³¤·½ÐεÄÃæ»ýΪa2+5ab+6b2£¬
¡à»µÄͼÖÐÐèÒªCÀ࿨Ƭ6ÕÅ£¬
¹Ê´ð°¸Îª£º6£®
¢Úa2+5ab+6b2=£¨a+2b£©£¨a+3b£©£¬
¹Ê´ð°¸Îª£º£¨a+2b£©£¨a+3b£©£®
£¨3£©½â£º¸ù¾Ýͼ¢ÛµÃ£ºx+y=m£¬
¡ßm2-n2=4xy£¬
¡àxy=$\frac{{m}^{2}-{n}^{2}}{4}$£¬
x2-y2=£¨x+y£©£¨x-y£©=mn£¬
¡àx2+y2=£¨x+y£©2-2xy=m2-2¡Á$\frac{{m}^{2}-{n}^{2}}{4}$=$\frac{{m}^{2}+{n}^{2}}{2}$£¬
¡àÑ¡Ïî¢Ù¢Ú¢Û¢Ü¶¼ÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Û¢Ü£®
µãÆÀ ±¾Ì⿼²éÁË·Ö½âÒòʽ£¬³¤·½ÐεÄÃæ»ý£¬Æ½·½²î¹«Ê½£¬Íêȫƽ·½¹«Ê½µÄÓ¦Óã¬Ö÷Òª¿¼²éѧÉúµÄ¹Û²ìͼÐεÄÄÜÁ¦ºÍ»¯¼òÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
10£®Èô£¨x2-x+m£©£¨x-8£©Öв»º¬xµÄÒ»´ÎÏÔòmµÄֵΪ£¨¡¡¡¡£©
| A£® | 8 | B£® | -8 | C£® | 0 | D£® | 8»ò-8 |
4£®ÔÚÏÂÁжàÏîʽ³Ë·¨ÔËËãÖУ¬²»ÄÜÔËÓÃÆ½·½²î¹«Ê½½øÐÐÔËËãµÄÊÇ£¨¡¡¡¡£©
| A£® | £¨2x+3y£© £¨-2x+3y£© | B£® | £¨a-2b£© £¨a+2b£© | C£® | £¨-x-2y£© £¨x+2y£© | D£® | £¨-2x-3y£© £¨3y-2x£© |
8£®ÔÚ5-2£¬£¨-5£©2£¬-£¨-5£©2£¬-|-5|£¬£¨-5£©-2£¬-5-2ÖУ¬¸ºÊýµÄ¸öÊýΪ£¨¡¡¡¡£©
| A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |