题目内容
| A、8 | B、12 | C、24 | D、28 |
考点:平行四边形的性质
专题:
分析:根据平行四边形的性质得到AB=CD,AD=BC,根据2(AB+BC)=32,即可求出答案.
解答:解:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
∵平行四边形ABCD的周长是32,
∴2(AB+BC)=32,
∴BC=12.
故选B.
∴AB=CD,AD=BC,
∵平行四边形ABCD的周长是32,
∴2(AB+BC)=32,
∴BC=12.
故选B.
点评:题主要考查对平行四边形的性质的理解和掌握,能利用平行四边形的性质进行计算是解此题的关键.
练习册系列答案
相关题目
如果m-n=5,那么-3m+3n-7的值是( )
| A、-22 | B、-8 | C、8 | D、-22 |
下列式子中,表示y是x的反比例函数的是( )
| A、xy=1 | ||
B、y=
| ||
C、y=
| ||
D、y=
|
下列各点在x轴上的是( )
| A、(0,-1) |
| B、(0,2) |
| C、(1,1) |
| D、(1,0) |
若直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是( )
| A、60 | B、30 | C、20 | D、32 |