题目内容
观察下列等式:
在上述数字宝塔中,从上往下数,2016在第_____层.
如图,点A、O、B在同一直线上,CO⊥AB于点O,若∠1=∠2,则图中互余的角共有( )
A.5对 B.4对
C.3对 D.2对
先化简,再求值已知A=x2-2x-1, B=2x2-6x+3, 求3A-[(2A-B)-2(A-B)]的值,其中x=-7.
下列各式:①﹣(﹣2);②﹣|﹣2|;③﹣22;④﹣(﹣2)2,计算结果为负数的个数有( ).
A. 4个 B. 3个 C. 2个 D. 1个
我省某地区为了了解2016年初中毕业生毕业去向,对部分九年级学生进行了抽样调查,就九年级学生毕业后的四种去向:A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其他(如出国等)进行数据统计,并绘制了两幅不完整的统计图(如图1,如图2)
(1)填空:该地区共调查了 名九年级学生;
(2)将两幅统计图中不完整的部分补充完整;
(3)若该地区2016年初中毕业生共有3500人,请估计该地区今年初中毕业生中读普通高中的学生人数;
(4)老师想从甲,乙,丙,丁4位同学中随机选择两位同学了解他们毕业后的去向情况,请用画树状图或列表的方法求选中甲同学的概率.
抛物线图象如图所示,根据图象,抛物线的解析式可能是( )
A. y=x2﹣2x+3 B. y=﹣x2﹣2x+3 C. y=﹣x2+2x+3 D. y=﹣x2+2x﹣3
如图,在△ABC中,点D、E分AB、AC边上,DE∥BC,若AD:AB=3:4,AE=6,则AC等于( )
A.3 B.4 C.6 D.8
如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物是否需要挪走,并说明理由.
【答案】(1)5.6m;(2)应挪走.
【解析】试题解析:试题分析:(1)在构建的直角三角形中,首先求出两个直角三角形的公共直角边,进而在Rt△ACD中,求出AC的长.(2)通过解直角三角形,可求出BD、CD的长,进而可求出BC、PC的长.然后判断PC的值是否大于2米即可.
试题解析:(1)如图,在Rt△ABD中,AD=ABsin45°=4. 在Rt△ACD中,∵∠ACD=30°,∴AC=2AD=8. 即新传送带AC的长度约为8米;(2)结论:货物MNQP不用挪走. 【解析】在Rt△ABD中,BD=ABcos45°=4=4. 在Rt△ACD中,CD=AD=4.∴CB=CD-BD=4-4≈2.8.∵PC=PB-CB≈5-2.8=2.2>2,∴货物MNQP不应挪走.
【题型】解答题【结束】8
如图有一圆锥形粮堆,其主视图是边长为6m的正三形ABC。
(1)求该圆锥形粮堆的侧面积。
(2)母线AC的中点P处有一老鼠正在偷吃粮食,小猫从B处沿圆锥表面去偷袭老鼠,求小猫经过的最短路程。 (结果不取近似数)
如图,△ABC中,AD为∠BAC的平分线,且DF⊥AC于F,∠B=90°,DE=DC.求证:BE=CF.