题目内容
6.(1)用反证法证明命题:“三角形的三个内角中,至少有一个内角大于或等于60°.先假设所求证的结论不成立,即三角形内角中全都小于60°;(2)写出命题“一次函数y=kx+b,若k>0,b>0,则它的图象不经过第二象限.”的逆命题,并判断逆命题的真假.若为真命题,请给予证明;若是假命题,请举反例说明.
分析 (1)直接利用反证法的第一步分析得出答案;
(2)利用命题与定理,首先写出假命题进而得出答案;
解答 解:(1)用反证法证明命题:“三角形的三个内角中,至少有一个内角大于或等于60°.
先假设所求证的结论不成立,即三角形内角中全都小于60°;
故答案为:三角形内角中全都小于60°;
(2)逆命题:“一次函数y=kx+b的图象不经过第二象限,则k>0,b>0,”
逆命题为假命题,反例:当b=0时,一次函数图象也不过第二象限 (不唯一).
点评 此题主要考查了反证法以及命题与定理,正确写出逆命题是解题关键.
练习册系列答案
相关题目
17.有四张卡片,正面上分别标有数字-1,0,1,2,它们除所标数字不同外,其他都完全相同,现把这四张牌扣在桌面上,背面朝上,洗匀后随机抽取一张记下卡上数字后放回桌面洗匀,再随机抽取一张,记下卡上数字,以第一次抽取的数字作为横坐标,第二次抽取的数字作为纵坐标的点落在第一象限的概率是( )
| A. | $\frac{1}{6}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{3}$ |