题目内容

6.(1)用反证法证明命题:“三角形的三个内角中,至少有一个内角大于或等于60°.先假设所求证的结论不成立,即三角形内角中全都小于60°;
(2)写出命题“一次函数y=kx+b,若k>0,b>0,则它的图象不经过第二象限.”的逆命题,并判断逆命题的真假.若为真命题,请给予证明;若是假命题,请举反例说明.

分析 (1)直接利用反证法的第一步分析得出答案;
(2)利用命题与定理,首先写出假命题进而得出答案;

解答 解:(1)用反证法证明命题:“三角形的三个内角中,至少有一个内角大于或等于60°.
先假设所求证的结论不成立,即三角形内角中全都小于60°;
故答案为:三角形内角中全都小于60°;
                                                 
(2)逆命题:“一次函数y=kx+b的图象不经过第二象限,则k>0,b>0,”
逆命题为假命题,反例:当b=0时,一次函数图象也不过第二象限 (不唯一).

点评 此题主要考查了反证法以及命题与定理,正确写出逆命题是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网