题目内容
19.已知BC是⊙O的直径,AD是⊙O的切线,切点为A,AD交CB的延长线于点D,连接AB,AO.(Ⅰ)如图①,求证:∠OAC=∠DAB;
(Ⅱ)如图②,AD=AC,若E是⊙O上一点,求∠E的大小.
分析 (Ⅰ)先由切线和直径得出直角,再用同角的余角相等即可;
(Ⅱ)由等腰三角形的性质和圆的性质直接先判断出∠ABC=2∠C,即可求出∠C.
解答 解:(Ⅰ)∵AD是⊙O的切线,切点为A,
∴DA⊥AO,
∴∠DAO=90°,
∴∠DAB+∠BAO=90°,
∵BC是⊙O的直径,
∴∠BAC=90°,
∴∠BAO+∠OAC=90°,
∴∠OAC=∠DAB,
(Ⅱ)∵OA=OC,
∴∠OAC=∠C,
∵AD=AC,
∴∠D=∠C,
∴∠OAC=∠D,
∵∠OAC=∠DAB,
∴∠DAB=∠D,
∵∠ABC=∠D+∠DAB,
∴∠ABC=2∠D,
∵∠D=∠C,
∴∠ABC=2∠C,
∵∠BAC=90°,
∴∠ABC+∠C=90°,
∴2∠C+∠C=90°,
∴∠C=30°,
∴∠E=∠C=30°
点评 此题是切线的性质题,主要考查了同角的余角相等,等腰三角形的性质,解本题的关键是得出∠ABC=2∠D.
练习册系列答案
相关题目
10.如果|a|=$\frac{1}{2}$,则a的值是( )
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | 0或$\frac{1}{2}$ | D. | $\frac{1}{2}$或-$\frac{1}{2}$ |
14.在Rt△ABC中,∠C=90°,各边都扩大2倍,则锐角A的正弦值( )
| A. | 扩大2倍 | B. | 缩小$\frac{1}{2}$ | C. | 不变 | D. | 无法确定 |
18.若x2-kx+16恰好是另一个整式的平方,则常数k的值为( )
| A. | 4 | B. | 8 | C. | -8 | D. | ±8 |
19.
如图,在菱形ABCD和菱形BEFG中,点A,B,E在同一直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,则tan∠PCG=( )
| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{2}}{2}$ |