ÌâÄ¿ÄÚÈÝ
13£®£¨1£©Çó¸Ã·´±ÈÀýº¯Êý½âÎöʽ£»
£¨2£©Á¬½ÓOB£¬ÔٰѵãA£¨2£¬0£©ÓëµãBÁ¬½Ó£¬½«¡÷OABÈÆµãO°´Ë³Ê±Õë·½ÏòÐýת135¡ãµÃµ½¡÷OA¡äB¡ä£¬Ð´³öA¡äB¡äµÄÖеãPµÄ×ø±ê£¬ÊÔÅжϵãPÊÇ·ñÔÚ´ËË«ÇúÏßÉÏ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©Èçͼ£¬Èô¸Ã·´±ÈÀýº¯ÊýͼÏóÉÏÓÐÒ»µãF£¨2m£¬m-$\frac{1}{2}$£©£¨ÆäÖÐm£¾0£©£¬ÔÚÉäÏßOFÉÏÈÎȡһµãE£¬ÉèEµãµÄ×Ý×ø±êΪn£¬¹ýFµã×÷FM¡ÍxÖáÓÚµãM£¬Á¬½ÓEM£¬Ê¹¡÷OEMµÄÃæ»ýÊÇ$\frac{\sqrt{2}}{2}$£¬ÇónµÄÖµ£®
·ÖÎö £¨1£©°ÑB£¨1£¬1£©´úÈëy=$\frac{k}{x}$¼´¿ÉµÃµ½½áÂÛ£»
£¨2£©¸ù¾ÝÐýתµÄÐÔÖʵõ½¡ÏAOA¡ä=135¡ã£¬OA¡ä=OA£¬¸ù¾ÝÈý½Çº¯ÊýµÄ¶¨ÒåµÃµ½A¡ä£¨-$\sqrt{2}$£¬-$\sqrt{2}$£©£¬B¡ä£¨0£¬-$\sqrt{2}$£©£¬ÓÚÊǵõ½½áÂÛ£»
£¨3£©°ÑF£¨2m£¬m-$\frac{1}{2}$£©´úÈëy=$\frac{1}{x}$£¬µÃµ½m1=1£¬m2=-$\frac{1}{2}$£®¸ù¾ÝS¡÷OEM=$\frac{\sqrt{2}}{2}$£¬ÇóµÃn=$\frac{\sqrt{2}}{2}$£®
½â´ð
½â£º£¨1£©¡ßB£¨1£¬1£©ÔÚy=$\frac{k}{x}$µÄͼÏóÉÏ£¬
¡àk=xy=1¡Á1=1£¬
¡ày=$\frac{1}{x}$£®
£¨2£©Èçͼ1£¬¡ßA£¨2£¬0£©£¬B£¨1£¬1£©£¬
¡àOA=2£¬OB=$\sqrt{2}$£¬
¡ß½«¡÷OABÈÆµãO°´Ë³Ê±Õë·½ÏòÐýת135¡ãµÃµ½¡÷OA¡äB¡ä£¬
¡à¡ÏAOA¡ä=135¡ã£¬OA¡ä=OA£¬
¡àA¡ä£¨-$\sqrt{2}$£¬-$\sqrt{2}$£©£¬B¡ä£¨0£¬-$\sqrt{2}$£©£¬![]()
¡àA¡äB¡äµÄÖеãΪP£¨-$\frac{\sqrt{2}}{2}$£¬-$\sqrt{2}$£©£¬
¡ß£¨-$\frac{\sqrt{2}}{2}$£©¡Á£¨-$\sqrt{2}$£©=1£¬
¡àPÔÚË«ÇúÏßÉÏ£»
£¨3£©Èçͼ2£¬¡ßF£¨2m£¬m-$\frac{1}{2}$£©ÔÚ·´±ÈÀýº¯Êýy=$\frac{1}{x}$ͼÏóÉÏ£¬
¡àm1=1£¬m2=-$\frac{1}{2}$£®
ÓÖ¡ßm=1£¬
¡àF£¨2£¬$\frac{1}{2}$£©£®
¡ßFM¡ÍxÖᣬ
¡àm£¨2£¬0£©£¬¡àM£¨2£¬0£©£¬¡àOM=2£®
¡ßS¡÷OEM=$\frac{\sqrt{2}}{2}$£¬
¡à$\frac{1}{2}$OM•n=$\frac{\sqrt{2}}{2}$£¬¼´$\frac{1}{2}$¡Á2n=$\frac{\sqrt{2}}{2}$£¬
¡àn=$\frac{\sqrt{2}}{2}$£®
µãÆÀ ±¾Ì⿼²éÁËÓôý¶¨ÏµÊý·¨Çó·´±ÈÀýº¯ÊýµÄ½âÎöʽ£¬ÐýתµÄÐÔÖÊ£¬Èý½ÇÐÎÃæ»ýµÄ¼ÆË㣬Èñ½ÇÈý½Çº¯Êý£¬µÃ³öA¡ä£¨-$\sqrt{2}$£¬-$\sqrt{2}$£©£¬B¡ä£¨0£¬-$\sqrt{2}$£©ÊǽâÌâµÄ¹Ø¼ü£®
| A£® | 56 | B£® | 63 | C£® | 70 | D£® | 77 |
| A£® | $\sqrt{3}$ | B£® | $\sqrt{2}$ | C£® | 1 | D£® | 0 |
| A£® | a+b+c£¾2 | B£® | 2a-b£¼0 | C£® | b£¼1 | D£® | 3a+c£¾2 |