题目内容
7.已知四边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么可以判定四边形ABCD是平行四边形的是( )①再加上条件“BC=AD”,则四边形ABCD一定是平行四边形.
②再加上条件“∠BAD=∠BCD”,则四边形ABCD一定是平行四边形.
③再加上条件“AO=CO”,则四边形ABCD一定是平行四边形.
④再加上条件“∠DBA=∠CAB”,则四边形ABCD一定是平行四边形.
| A. | ①和② | B. | ①③和④ | C. | ②和③ | D. | ②③和④ |
分析 由“一组对边平行且相等的四边形是平行四边形”得出①不正确;
由平行线的性质和添加条件得出AD∥BC,得出四边形ABCD是平行四边形,②正确;
由平行线得出△AOB∽△COD,得出对应边成比例,证出BO=DO,得出四边形ABCD是平行四边形,③正确;
先证出AO=BO,在证明△AOB∽△COD,得出对应边成比例得出CO=DO,因此四边形ABCD不一定是平行四边形,得出④不正确.
解答 解:∵一组对边平行且相等的四边形是平行四边形,
∴①不正确;
∵AB∥CD,![]()
∴∠ABC+∠BCD=180°,
∵∠BAD=∠BCD,
∴∠ABC+∠BAD=180°,
∴AD∥BC,
∴四边形ABCD是平行四边形,
∴②正确,如图所示;
∵AB∥CD,
∴△AOB∽△COD,
∴AO:CO=BO:DO,
∵AO=CO,
∴BO=DO,
∴四边形ABCD是平行四边形,
∴③正确;
∵∠DBA=∠CAB,
∴AO=BO,
∵AB∥CD,
∴△AOB∽△COD,
∴AO:CO=BO:DO,
∵AO=BO,
∴CO=DO,四边形ABCD不一定是平行四边形,
∴④不正确;
故选:C.
点评 本题考查了平行四边形的判定、平行线的性质、相似三角形的判定与性质;熟练掌握平行四边形的判定方法是解决问题的关键.
练习册系列答案
相关题目