题目内容

9.阅读下列材料,然后回答问题.
在进行二次根式的化简与运算时,我们有时会碰上如$\frac{2}{\sqrt{3}+1}$这样的式子,我们要用到分母有理化的方法将其化简:
$\frac{2}{\sqrt{3}+1}$=$\frac{2×(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}$=$\frac{2(\sqrt{3}-1)}{{(\sqrt{3})}^{2}-{1}^{2}}=\sqrt{3}-1$
除了分母有理化,还可以用以下方法化简:
$\frac{2}{\sqrt{3}+1}$=$\frac{3-1}{\sqrt{3}+1}=\frac{{(\sqrt{3})}^{2}-{1}^{2}}{\sqrt{3}+1}=\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{\sqrt{3}+1}=\sqrt{3}-1$
(1)请用不同的方法化简$\frac{2}{\sqrt{5}+\sqrt{3}}$.
(2)求$\frac{2}{\sqrt{3}+1}$+$\frac{2}{\sqrt{5}+\sqrt{3}}$+$\frac{2}{\sqrt{7}+\sqrt{5}}$+…+$\frac{2}{\sqrt{2n+1}+\sqrt{2n-1}}$的值(n为正整数)

分析 (1)根据平方差公式,可得答案;
(2)根据平方差公式,可得答案.

解答 解:(1)$\frac{2}{\sqrt{5}+\sqrt{3}}$=$\frac{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}{\sqrt{5}+\sqrt{3}}$=$\sqrt{5}$-$\sqrt{3}$;
$\frac{2}{\sqrt{5}+\sqrt{3}}$=$\frac{2(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}$=$\sqrt{5}$-$\sqrt{3}$;
(2)原式=$\sqrt{3}$-1+$\sqrt{5}$-$\sqrt{3}$+$\sqrt{7}$-$\sqrt{5}$+…+$\sqrt{2n+1}$-$\sqrt{2n-1}$
=$\sqrt{2n+1}$-1.

点评 本题考查了分母有理化,利用平方差公式是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网