题目内容

19.如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.
(1)求证:DE=DF,DE⊥DF;
(2)连接EF,若AC=10,求EF的长.

分析 (1)证明△BDG≌△ADC,根据全等三角形的性质、直角三角形的性质证明;
(2)根据直角三角形的性质分别求出DE、DF,根据勾股定理计算即可.

解答 (1)证明:∵AD⊥BC,
∴∠ADB=∠ADC=90°,
在△BDG和△ADC中,
$\left\{\begin{array}{l}{BD=AD}\\{∠BDG=∠ADC}\\{DG=DC}\end{array}\right.$,
∴△BDG≌△ADC,
∴BG=AC,∠BGD=∠C,
∵∠ADB=∠ADC=90°,E,F分别是BG,AC的中点,
∴DE=$\frac{1}{2}$BG=EG,DF=$\frac{1}{2}$AC=AF,
∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,
∴∠EDG+∠FDA=90°,
∴DE⊥DF;
(2)解:∵AC=10,
∴DE=DF=5,
由勾股定理得,EF=$\sqrt{D{E}^{2}+D{F}^{2}}$=5$\sqrt{2}$.

点评 本题考查的是全等三角形的判定和性质、直角三角形的性质以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网