题目内容


二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a-b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的有(     )

  A.①②③           B.②④              C.②⑤           D.②③⑤


 D  

解析:∵图象开口向下,∴a<0.∵对称轴x=-=1,∴b=-2a,得b>0,2a+b=0.∵坐标轴与抛物线交点在y轴正半轴,∴c>0,∴abc<0,故①错,②对;排除A;∵对称轴是x=1,∴y最大值为a+b+c,当x=m(m≠1)时,y=am2+bm+c,可知a+b+c>am2+bm+c,故当m≠1时,a+b>am2+bm,故③对,可得答案D.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网