题目内容

1.若以△ABC两边AB、BC为边分别向外作等腰Rt△ABE和等腰Rt△BCH,连接AH、CE交于点O,过点B作BM⊥AC,垂足为M,延长MB交EH于N,求证:
(1)AH=CE;
(2)AH⊥CE;
(3)EN=HN.

分析 (1)根据等腰直角三角形的性质得到AB=BE,BC=BH,∠ABE=∠CBH=90°,求得∠ABH=∠EBC,推出△ABH≌△EBC,根据全等三角形的性质得到结论;
(2)根据全等三角形的性质得到∠BAH=∠CEB,推出A,G,B,E四点共圆,根据圆周角定理得到∠AGE=∠ABE=90°,即可得到结论;
(3)过E作EF⊥MN于F,HQ⊥MN于Q,根据余角的性质得到∠HBQ=∠BCM,推出△BHQ≌△BMC,根据全等三角形的性质得到HQ=BM,同理EF=BM,等量代换得到EF=HQ,推出△EFN≌△HQN,根据全等三角形的性质即可得到结论.

解答 证明:(1)∵△ABE与△BCH是等腰直角三角形,
∴AB=BE,BC=BH,∠ABE=∠CBH=90°,
∴∠ABH=∠EBC,
在△ABH与△EBC中,$\left\{\begin{array}{l}{AB=BE}\\{∠ABH=∠EBC}\\{BH=BC}\end{array}\right.$,
∴△ABH≌△EBC,
∴AH=CE;

(2)∵△ABH≌△EBC,
∴∠BAH=∠CEB,
∴A,G,B,E四点共圆,
∴∠AGE=∠ABE=90°,
∴AH⊥CE;

(3)过E作EF⊥MN于F,HQ⊥MN于Q,
∵∠HBQ+∠MBC=90°,∠BCM+∠MBC=90°,
∴∠HBQ=∠BCM,
在△BHQ与△BMC中,$\left\{\begin{array}{l}{∠HBQ=∠BCM}\\{∠HQB=∠BMC=90°}\\{BH=BC}\end{array}\right.$,
∴△BHQ≌△BMC,
∴HQ=BM,同理EF=BM,
∴EF=HQ,
在△EFN与△HQN中,$\left\{\begin{array}{l}{∠F=∠HQN=90°}\\{EF=HQ}\\{∠ENF=∠HNQ}\end{array}\right.$,
∴△EFN≌△HQN,
∴EN=HN.

点评 本题考查了全等三角形的判定和性质,等腰直角三角形的性质,四点共圆,熟练掌握全等三角形的判定和性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网