题目内容
20.为推广阳光体育“大课间”活动,某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?
(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两幅统计图中的B补充完整;
(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
分析 (1)用A的人数除以所占的百分比,即可求出调查的学生数;
(2)用抽查的总人数减去A、C、D的人数,求出喜欢“立定跳远”的学生人数,再除以被调查的学生数,求出所占的百分比,再画图即可;
(3)用A表示男生,B表示女生,画出树形图,再根据概率公式进行计算即可.
解答 解:(1)根据题意,得:15÷10%=150(人),
答:在这项调查中,共调查了150名学生;
(2)本次调查中喜欢“立定跳远”的学生人数为:150-15-60-30=45(人),
“立定跳远”的学生占被调查学生百分比为:$\frac{45}{150}$×100%=30%,
补全图形如下:![]()
(3)用A表示男生,B表示女生,画图如下:![]()
共有20种情况,同性别学生的情况是8种,
则刚好抽到同性别学生的概率是$\frac{8}{20}$=$\frac{2}{5}$.
点评 本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
练习册系列答案
相关题目
9.某林业部门要考察某种幼树在一定条件下的移植成活率,在同样的条件下对这种幼树进行大量移植,并统计成活情况,记录如下(其中频率结果保留小数点后三位)
由此可以估计幼树移植成活的概率为0.892.
| 移植总数(n) | 10 | 50 | 270 | 400 | 750 | 1500 | 3500 | 7000 | 9000 |
| 成活数(m) | 8 | 47 | 235 | 369 | 662 | 1335 | 3203 | 6335 | 8118 |
| 成活的频率$\frac{m}{n}$ | 0.800 | 0.940 | 0.870 | 0.923 | 0.883 | 0.890 | 0.915 | 0.905 | 0.902 |