ÌâÄ¿ÄÚÈÝ
13£®£¨1£©Èç¹ûС»ªÕ¾ÔÚODÖ®¼ä£¬ÇÒÀëµãOµÄ¾àÀëΪ3Ã×£¬µ±Éþ×Ó˦µ½×î¸ß´¦Ê±¸ÕºÃͨ¹ýËûµÄÍ·¶¥£¬ÇëÄãËã³öС»ªµÄÉí¸ß£»
£¨2£©Èç¹ûÉí¸ßΪ1.4Ã×µÄСÀöÕ¾ÔÚODÖ®¼ä£¬ÇÒÀëµãOµÄ¾àÀëΪtÃ×£¬Éþ×Ó˦µ½×î¸ß´¦Ê±³¬¹ýËýµÄÍ·¶¥£¬Çë½áºÏͼÏóÖ±½Óд³ötµÄȡֵ·¶Î§1¡Üt¡Ü5£®
·ÖÎö £¨1£©¸ù¾ÝÌâÒâ¿ÉÒÔÇóµÃÅ×ÎïÏߵĽâÎöʽ£¬´Ó¶ø¿ÉÒÔÇóµÃС»ªµÄÉí¸ß£»
£¨2£©¸ù¾Ý¶þ´Îº¯Êý¾ßÓжԳÆÐÔ¿ÉÒÔ½â´ð±¾Ì⣮
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£¬Å×ÎïÏß¾¹ýµã£¨1£¬1.4£©£¬¶¥µãµÄºá×ø±êΪx=3£¬
Ôò$\left\{\begin{array}{l}{a¡Á{1}^{2}+b¡Á1+0.9=1.4}\\{-\frac{b}{2a}=3}\end{array}\right.$£¬
½âµÃ£¬a=-0.1£¬b=0.6£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=-0.1x2+0.6x+0.9£¬
µ±x=3ʱ£¬y=-0.1¡Á32+0.6¡Á3+0.9=1.8£¬
¼´Ð¡»ªµÄÉí¸ßÊÇ1.8Ã×£»
£¨2£©¡ßÅ×ÎïÏߵĶԳÆÖáΪֱÏßx=3£¬Éí¸ßΪ1.4Ã×µÄСÀöÕ¾ÔÚ¾àµãOµÄˮƽ¾àÀëΪ1Ã׵ĵãF´¦£¬Éþ×Ó˦µ½×î¸ß´¦Ê±¸ÕºÃͨ¹ýËýµÄÍ·¶¥µãE£¬
¡àÉí¸ßΪ1.4Ã×µÄСÀöÕ¾ÔÚODÖ®¼ä£¬ÇÒÀëµãOµÄ¾àÀëΪtÃ×£¬Éþ×Ó˦µ½×î¸ß´¦Ê±³¬¹ýËýµÄÍ·¶¥Ê±tµÄȡֵ·¶Î§ÊÇ£º
1¡Üt¡Ü5£¬
¹Ê´ð°¸Îª£º1¡Üt¡Ü5£®
µãÆÀ ±¾Ì⿼²é¶þ´Îº¯ÊýµÄÓ¦Ó㬽âÌâµÄ¹Ø¼üÊÇÃ÷È·ÌâÒ⣬ÕÒ³öËùÇóÎÊÌâÐèÒªµÄÌõ¼þ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
3£®
Èçͼ£¬?ABCDÖУ¬¶Ô½ÇÏßAC¡¢BD½»ÓÚµãO£¬µãEÊÇBCµÄÖе㣮ÈôOE=3cm£¬ÔòABµÄ³¤Îª£¨¡¡¡¡£©
| A£® | 3 cm | B£® | 6 cm | C£® | 9 cm | D£® | 12 cm |