题目内容

(本题满分8分)利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.

(1)当每吨售价是240元时,计算此时的月销售量;

(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元?

 

(1)60 (2)200

【解析】

试题分析:(1)因为每吨售价每下降10元时,月销售量就会增加7.5吨,可求出当每吨售价是240元时,此时的月销售量是多少吨.

(2)设当售价定为每吨x元时,根据当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元,当每吨售价每下降10元时,月销售量就会增加7.5吨,且该经销店计划月利润为9000元而且尽可能地扩大销售量,以9000元做为等量关系可列出方程求解.

试题解析:(1)当每吨售价是240元时,

此时的月销售量为:45+×7.5=60;

(2)设当售价定为每吨x元时,

由题意,可列方程(x-100)(45+×7.5)=9000.

化简得x2-420x+44000=0.

解得x1=200,x2=220.

当售价定为每吨200元时,销量更大,

所以售价应定为每吨200元.

考点:一元二次方程的应用

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网