题目内容
已知关于x的方程x2-(2k+1)x+4(k-
)=0.
(1)求证:无论k为何值时,方程总有两个实数根.
(2)若等腰△ABC的一边长a=4,另两边b、c恰好是这个方程的两个实数根,求△ABC的周长.
| 1 |
| 2 |
(1)求证:无论k为何值时,方程总有两个实数根.
(2)若等腰△ABC的一边长a=4,另两边b、c恰好是这个方程的两个实数根,求△ABC的周长.
考点:根的判别式,根与系数的关系,等腰三角形的性质
专题:
分析:(1)先把方程化为一般式:x2-(2k+1)x+4k-2=0,要证明无论k取任何实数,方程总有两个实数根,即要证明△≥0;
(2)先利用因式分解法求出两根:x1=2,x2=2k-1.先分类讨论:若a=4为底边;若a=4为腰,分别确定b,c的值,求出三角形的周长.
(2)先利用因式分解法求出两根:x1=2,x2=2k-1.先分类讨论:若a=4为底边;若a=4为腰,分别确定b,c的值,求出三角形的周长.
解答:(1)证明:方程化为一般形式为:x2-(2k+1)x+4k-2=0,
∵△=(2k+1)2-4(4k-2)=(2k-3)2,
而(2k-3)2≥0,
∴△≥0,
所以无论k取任何实数,方程总有两个实数根;
(2)解:x2-(2k+1)x+4k-2=0,
整理得(x-2)[x-(2k-1)]=0,
∴x1=2,x2=2k-1,
当a=4为等腰△ABC的底边,则有b=c,
因为b、c恰是这个方程的两根,则2=2k-1,
解得k=
,则三角形的三边长分别为:2,2,4,
∵2+2=4,这不满足三角形三边的关系,舍去;
当a=4为等腰△ABC的腰,
因为b、c恰是这个方程的两根,所以只能2k-1=4,
则三角形三边长分别为:2,4,4,
此时三角形的周长为2+4+4=10.
所以△ABC的周长为10.
∵△=(2k+1)2-4(4k-2)=(2k-3)2,
而(2k-3)2≥0,
∴△≥0,
所以无论k取任何实数,方程总有两个实数根;
(2)解:x2-(2k+1)x+4k-2=0,
整理得(x-2)[x-(2k-1)]=0,
∴x1=2,x2=2k-1,
当a=4为等腰△ABC的底边,则有b=c,
因为b、c恰是这个方程的两根,则2=2k-1,
解得k=
| 3 |
| 2 |
∵2+2=4,这不满足三角形三边的关系,舍去;
当a=4为等腰△ABC的腰,
因为b、c恰是这个方程的两根,所以只能2k-1=4,
则三角形三边长分别为:2,4,4,
此时三角形的周长为2+4+4=10.
所以△ABC的周长为10.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了分类思想的运用、等腰三角形的性质和三角形三边的关系.
练习册系列答案
相关题目
a是二位数,b是三位数,如果把a置于b的左边,那么所成的三位数可表示为( )
| A、1000a+10b |
| B、1000a+b |
| C、ab |
| D、1000ab |
菱形的周长为16,且有一个内角为120°,则此菱形的面积为( )
A、4
| ||
B、8
| ||
C、10
| ||
D、12
|
若关于x的一元二次方程x|a|+1-3x+a2-a=0的一个根为0,则a的值( )
| A、0 | B、±1 | C、0或1 | D、1 |