题目内容

4.如图,AB是⊙O的直径,弦BC长为$4\sqrt{2}$,弦AC长为2,∠ACB的平分线交⊙O于点D,求AB和AD的长.

分析 由AB是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ACB=∠ADB=90°,然后由勾股定理求得AB的长,又由CD平分∠ACB,可得△ABD是等腰直角三角形,继而求得答案.

解答 解:∵AB是⊙O的直径,
∴∠ACB=∠ADB=90°,
∵弦BC长为$4\sqrt{2}$,弦AC长为2,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=6;
∵CD平分∠ACB,
∴$\widehat{AD}$=$\widehat{BD}$,
∴AD=BD,
∴∠BAD=45°,
∴AD=AB•cos45°=$3\sqrt{2}$.

点评 此题考查了圆周角定理、等腰直角三角形的性质以及勾股定理.注意直径所对的圆周角是直角定理的应用是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网