题目内容
如图,有一块直角三角形纸片,两直角边AC=3cm,BC=4cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD=__________.
![]()
cm.
【考点】翻折变换(折叠问题).
【分析】先利用勾股定理求得AB=5,然后由翻折的性质得到AE=AC=3,CD=DE,则EB=2,设CD=EC=x,则BD=4﹣x,然后在Rt△DEB中利用勾股定理列方程求解即可.
【解答】解:在Rt△ACB中,AB=
=5,
由翻折的性质可知:AE=AC=3,CD=DE,则BE=2.
设CD=DE=x,则BD=4﹣x.
Rt△DEB中,由勾股定理得:DB2=DE2+EB2,即(4﹣x)2=x2+22,
解得:x=
.
∴CD=
.
故答案为:
cm.
【点评】本题主要考查的是翻折的性质、勾股定理的应用,利用翻折的性质和勾股定理列出关于x的方程是解题的关键.
练习册系列答案
相关题目