题目内容


如图,有一块直角三角形纸片,两直角边AC=3cm,BC=4cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD=__________


cm

【考点】翻折变换(折叠问题).

【分析】先利用勾股定理求得AB=5,然后由翻折的性质得到AE=AC=3,CD=DE,则EB=2,设CD=EC=x,则BD=4﹣x,然后在Rt△DEB中利用勾股定理列方程求解即可.

【解答】解:在Rt△ACB中,AB==5,

由翻折的性质可知:AE=AC=3,CD=DE,则BE=2.

设CD=DE=x,则BD=4﹣x.

Rt△DEB中,由勾股定理得:DB2=DE2+EB2,即(4﹣x)2=x2+22

解得:x=

∴CD=

故答案为:cm.

【点评】本题主要考查的是翻折的性质、勾股定理的应用,利用翻折的性质和勾股定理列出关于x的方程是解题的关键.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网