题目内容


如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,PN+PM+MN的最小值是5cm,则∠AOB的度数是__________


30°

【考点】轴对称-最短路线问题.

【分析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.

【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,

分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:

∵点P关于OA的对称点为D,关于OB的对称点为C,

∴PM=DM,OP=OD,∠DOA=∠POA;

∵点P关于OB的对称点为C,

∴PN=CN,OP=OC,∠COB=∠POB,

∴OC=OP=OD,∠AOB=∠COD,

∵PN+PM+MN的最小值是5cm,

∴PM+PN+MN=5,

∴DM+CN+MN=5,

即CD=5=OP,

∴OC=OD=CD,

即△OCD是等边三角形,

∴∠COD=60°,

∴∠AOB=30°.

故答案为:30°.

【点评】本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网