题目内容

18.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是(  )
A.∠A:∠B:∠C=3:4:5B.a:b:c=5:12:13C.a2=b2-c2D.∠A=∠C-∠B

分析 利用直角三角形的定义和勾股定理的逆定理逐项判断即可.

解答 解:A、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,可求得∠C≠90°,故△ABC不是直角三角形;
B、不妨设a=5,b=12,c=13,此时a2+b2=132=c2,即a2+b2=c2,故△ABC是直角三角形;
C、由条件可得到a2+c2=b2,满足勾股定理的逆定理,故△ABC是直角三角形;
D、由条件∠A=∠C-∠B,且∠A+∠B+∠C=180°,可求得∠C=90°,故△ABC是直角三角形;
故选A.

点评 本题主要考查直角三角形的判定方法,掌握判定直角三角形的方法是解题的关键,可以利用定义也可以利用勾股定理的逆定理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网