题目内容

如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.

(1)求证:PB是⊙O的切线;

(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2 ,求BC的长.

(1)证明见解析;(2)BC=2. 【解析】试题分析:(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论; (2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长. 试题解析:(1)证明:连接OB,如图所示: ∵AC是⊙O的直径, ∴∠ABC=90...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网