题目内容
下列说法正确的是 ( )
A. 两个全等的图形可看做其中一个是由另一个平移得到的
B. 由平移得到的两个图形对应点连线互相平行(或共线)
C. 由平移得到的两个等腰三角形周长一定相等,但面积未必相等
D. 边长相等的两个正方形一定可以通过平移得到
如图所示,△ABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三角形,使所作三角形与△ABC全等,这样的三角形最多可以画出( )个.
![]()
A.2 B.4 C.6 D.8
在Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )
A. sin B=
B. cos B=
C. tan B=
D. tan B=![]()
菱形以特殊的对称美而深受人们的喜爱,在生产生活中有着广泛的应用,小龙家里有一面长4.2m、宽2.8m的墙壁准备装修,现有如图甲所示的型号瓷砖,其形状是一块长30cm、宽20cm的矩形,中间白色部分为菱形,阴影部分为带淡蓝色花纹的全等的四个直角三角形,解答下列各问:
![]()
(1)小龙家里的墙壁最少要贴这种瓷砖多少块?
(2)全部贴满后,这面墙壁上有多少个有淡蓝色花纹的菱形?
下列现象:(1)电风扇的转动;(2)打气筒打气时,活塞的运动;(3)钟摆的摆动;(4)传送带上瓶装饮料的移动.其中属于平移的是_________.
如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.
![]()
已知,如图,△ABC中,∠BAC=90°,AD⊥BC于D,则图中相等的锐角的对数有( )
![]()
A. 4对 B. 3对 C. 2对 D. 1对
文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”,“求证”(如图),她们对各自所作的辅助线描述如下:
![]()
文文:“过点A作BC的中垂线AD,垂足为D”;
彬彬:“作△ABC的角平分线AD”.
数学老师看了两位同学的辅助线作法后,说:“彬彬的作法是正确的,而文文的作法需要订正.”
(1)请你简要说明文文的辅助线作法错在哪里;
(2)根据彬彬的辅助线作法,完成证明过程.
写出一个解集为x>1的一元一次不等式:__________.