ÌâÄ¿ÄÚÈÝ
17£®¹ÅÏ£À°µÄ¼¸ºÎѧ¼Òº£Â×ÔÚËûµÄ¡¶¶ÈÁ¿¡·Ò»ÊéÖиø³öÁËÀûÓÃÈý½ÇÐεÄÈý±ßÇóÈý½ÇÐÎÃæ»ýµÄ¡°º£Â×¹«Ê½¡±£ºÈç¹ûÒ»¸öÈý½ÇÐεÄÈý±ß³¤·Ö±ðΪa¡¢b¡¢c£¬Éèp=$\frac{a+b+c}{2}$£¬ÔòÈý½ÇÐεÄÃæ»ýS=$\sqrt{p£¨p-a£©£¨p-b£©£¨p-c£©}$£®
ÎÒ¹úÄÏËÎÖøÃûµÄÊýѧ¼ÒÇØ¾ÅÉØ£¬ÔøÌá³öÀûÓÃÈý½ÇÐεÄÈý±ßÇóÃæ»ýµÄ¡°ÇؾÅÉØ¹«Ê½¡±£¨ÈýбÇó»ýÊõ£©£ºÈç¹ûÒ»¸öÈý½ÇÐεÄÈý±ß³¤·Ö±ðΪa¡¢b¡¢c£¬ÔòÈý½ÇÐεÄÃæ»ýS=$\sqrt{\frac{1}{4}[{a}^{2}{b}^{2}-£¨\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2}£©^{2}]}$£®
£¨1£©ÈôÒ»¸öÈý½ÇÐεÄÈý±ß³¤·Ö±ðÊÇ5£¬6£¬7£¬ÔòÕâ¸öÈý½ÇÐεÄÃæ»ýµÈÓÚ6$\sqrt{6}$£®
£¨2£©ÈôÒ»¸öÈý½ÇÐεÄÈý±ß³¤·Ö±ðÊÇ$\sqrt{5}¡¢\sqrt{6}¡¢\sqrt{7}$£¬ÇóÕâ¸öÈý½ÇÐεÄÃæ»ý£®
·ÖÎö £¨1£©°Ña¡¢b¡¢cµÄ³¤´úÈëÇó³öS2£¬ÔÙ¿ª·½¼ÆËã¼´¿ÉµÃ½â£»
£¨2£©°Ña¡¢b¡¢cµÄ³¤´úÈëÇó³öS2£¬ÔÙ¿ª·½¼ÆËã¼´¿ÉµÃ½â£®
½â´ð ½â£º£¨1£©p=$\frac{a+b+c}{2}$=$\frac{5+6+7}{2}$=9£¬
S=$\sqrt{p£¨p-a£©£¨p-b£©£¨p-c£©}$
=$\sqrt{9¡Á£¨9-5£©¡Á£¨9-6£©¡Á£¨9-7£©}$
=6$\sqrt{6}$£®
´ð£ºÕâ¸öÈý½ÇÐεÄÃæ»ýµÈÓÚ6$\sqrt{6}$£®
£¨2£©S=$\sqrt{\frac{1}{4}[{a}^{2}{b}^{2}-£¨\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2}£©^{2}]}$
=$\sqrt{\frac{1}{4}[{£¨\sqrt{5}£©}^{2}{¡Á£¨\sqrt{6}£©}^{2}-£¨\frac{£¨{\sqrt{5}£©}^{2}+£¨\sqrt{6}£©^{2}-£¨{\sqrt{7}£©}^{2}}{2}£©^{2}]}$
=$\sqrt{\frac{1}{4}[5¡Á6-£¨\frac{5+6-7}{2}£©^{2}]}$
=$\sqrt{\frac{1}{4}£¨30-4£©}$
=$\frac{\sqrt{26}}{2}$£®
´ð£ºÕâ¸öÈý½ÇÐεÄÃæ»ýÊÇ$\frac{\sqrt{26}}{2}$£®
¹Ê´ð°¸Îª£º6$\sqrt{6}$£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Î¸ùʽµÄÓ¦Óã¬ÄѵãÔÚÓÚ¶Ô¸÷ÏîÕûÀíÀûÓÃËãÊõƽ·½¸ùµÄ¶¨Ò弯Ë㣮
| A£® | 1µÄ¾ø¶ÔÖµÊÇ-1 | B£® | 1µÄµ¹ÊýÊÇ-1 | C£® | 1µÄÏà·´ÊýÊÇ-1 | D£® | 1µÄƽ·½¸ùÊÇ-1 |
| A£® | x2+x3=x6 | B£® | 2x+3y=5xy | C£® | £¨x3£©2=x6 | D£® | x6¡Âx3=x2 |
| A£® | 1 | B£® | 2 | C£® | $\sqrt{21}$ | D£® | $\sqrt{29}$ |
¢Ùº¯ÊýͼÏ󿪿ÚÏòÉÏ
¢ÚÎÞÂÛkÈ¡ºÎֵʱ£¬º¯ÊýͼÏó×ܽ»ÓÚyÖáµÄÕý°ëÖá
¢ÛÎÞÂÛkÈ¡ºÎֵʱ£¬º¯ÊýͼÏóÓëxÖáµÄ½»µã¼äµÄ¾àÀëΪ1
¢Üµ±k£¾$-\frac{3}{2}$ʱ£¬Í¼ÏóµÄ¶¥µãÔÚµÚËÄÏóÏÞ£®
| A£® | ¢Ù¢Ú¢Û¢Ü | B£® | ¢Ù¢Û¢Ü | C£® | ¢Ù¢Û | D£® | ¢Ù¢Ü |
| A£® | ·½²îÊÇ1.8 | B£® | ÖÚÊýÊÇ3 | C£® | ÖÐλÊýÊÇ3 | D£® | ƽ¾ùÊýÊÇ3 |