题目内容

如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=12cm,点P是AB边上的一个动点,过点P作PE⊥BC于点E,PF⊥AC于点F,当PB=6cm时,四边形PECF的面积最大,最大值为______

9cm2 【解析】试题分析:设PE=x,在Rt△PEB中,根据∠B=30°,可知PB=2x,BE=x,再在Rt△ABC中,利用三角函数的知识求出BC的长,进而可以表示出CE的长度;然后利用矩形的面积公式,即可得到四边形PECF的面积S关于x的表达式,对表达式进行配方,利用二次函数的最值即可得到答案. 【解析】 设PE=x,由∠B=30°, 得PB=2x,BE=x. 由AB...
练习册系列答案
相关题目

我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为:|x﹣y|表示在数轴上数x、y对应点之间的距离;在解题中,我们常常运用绝对值的几何意义.

①解方程|x|=2,容易看出,在数轴上与原点距离为2的点对应的数为±2,即该方程的解为x=±2.

②在方程|x﹣1|=2中,x的值就是数轴上到1的距离为2的点对应的数,显然x=3或x=﹣1.

③在方程|x﹣1|+|x+2|=5中,显然该方程表示数轴上与1和﹣2的距离之和为5 的点对应的x值,在数轴上1和﹣2的距离为3,满足方程的x的对应点在1的右边或﹣2的左边.若x的对应点在1的右边,由图示可知,x=2;同理,若x的对应点在﹣2的左边,可得x=﹣3,所以原方程的解是x=2或x=﹣3.根据上面的阅读材料,解答下列问题:

(1)方程|x|=5的解是_______________.

(2)方程|x﹣2|=3的解是_________________.

(3)画出图示,解方程|x﹣3|+|x+2|=9.

(1)x=5或-5 ;(2)x=5或-1;(3)x=5或-4. 【解析】试题分析: (1)由于|x|=5表示在数轴上数x与数0对应点之间的距离,所以x=±5; (2)由于|x-2|=3中,x的值就是数轴上到2的距离为3的点对应的数,显然x=5或-1; (3)方程|x-3|+|x+2|=9表示数轴上与3和-2的距离之和为9的点对应的x值,在数轴上3和-2的距离为5,满足方程的...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网