题目内容

如图所示,在矩形ABCD中,DE⊥AC于点E,设∠ADE=α,且cosα=
3
5
,AB=4,则AC的长为多少?
考点:矩形的性质
专题:
分析:根据等角的余角相等,得∠BAC=∠ADE=α;根据锐角三角函数定义可求AC的长.
解答:解:∵四边形ABCD是矩形,
∴∠ABC=90°,AD∥BC,
∴∠EAD=∠ACB,
∵在△ABC与△AED中,
∵DE⊥AC于E,∠ABC=90°
∴∠BAC=∠ADE=α.
∴cos∠BAC=cosα=
3
5

∴AC=
AB
cos∠BAC
=
20
3
点评:此题综合运用了锐角三角函数的知识、勾股定理、矩形的性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网