题目内容

13.如图,在正方形ABCD中,点E是边AD上任意一点,BE的垂直平分线FG交对角AC于点F.求证:
(1)BF=DF;
(2)BF⊥FE.

分析 (1)由正方形的性质得出AB=AD,∠BAF=∠DAF=45°,由SAS证明△BAF≌△DAF,得出对应边相等即可;
(2)由线段垂直平分线的性质得出BF=EF,证出EF=DF,得出∠FDE=∠FED,再由全等三角形的性质证出∠ABF=∠FED,由邻补角关系得出∠FED+∠FEA=180°,证出∠ABF+∠FEA=180°,由四边形内角和得出∠BAE+∠BFE=180°,求出∠BFE=90°即可.

解答 证明:如图所示:
(1)∵四边形ABCD是正方形,
∴AB=AD,∠BAF=∠DAF=45°,∠BAE=90°,
在△BAF和△DAF中,
$\left\{\begin{array}{l}{AB=AD}&{\;}\\{∠BAF=∠DAF}&{\;}\\{AF=AF}&{\;}\end{array}\right.$,
∴△BAF≌△DAF(SAS),
∴BF=DF;
(2)∵BE的垂直平分线FG交对角AC于点F,
∴BF=EF,
∵BF=DF,
∴EF=DF,
∴∠FDE=∠FED,
∵△BAF≌△DAF,
∴∠ABF=∠FDE,
∴∠ABF=∠FED,
∵∠FED+∠FEA=180°,
∴∠ABF+∠FEA=180°,
∴∠BAE+∠BFE=180°,
∴∠BFE=90°,
∴BF⊥FE.

点评 本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、四边形内角和定理等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网