ÌâÄ¿ÄÚÈÝ
7£®¶ÔÓÚÁ½¸öÒÑ֪ͼÐÎG1¡¢G2£¬ÔÚG1ÉÏÈÎȡһµãP£¬ÔÚG2ÉÏÈÎȡһµãQ£¬µ±Ïß¶ÎPQµÄ³¤¶È×îСʱ£¬ÎÒÃdzÆÕâ¸ö×îСµÄ³¤¶ÈΪͼÐÎG1¡¢G2µÄ¡°Ãܾࡱ£»µ±Ïß¶ÎPQµÄ³¤¶È×î´óֵʱ£¬ÎÒÃdzÆÕâ¸ö×î´óµÄ³¤¶ÈΪͼÐÎG1¡¢G2µÄ¡°Êè¾à¡±£®ÇëÄãÔÚѧϰ¡¢Àí½âÉÏÊö¶¨ÒåµÄ»ù´¡ÉÏ£¬½â¾öÏÂÃæµÄÎÊÌ⣻
ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬µãAµÄ×ø±êΪ£¨-3£¬4£©£¬µãBµÄ×ø±êΪ£¨3£¬4£©£¬¾ØÐÎABCDµÄ¶Ô³ÆÖÐÐÄΪµãO£®
£¨1£©Ïß¶ÎADºÍBCµÄ¡°ÃܾࡱÊÇ6£¬¡°Êè¾à¡±ÊÇ10£»
£¨2£©ÉèÖ±Ïßy=-$\frac{3}{4}$x+b£¨b£¾0£©ÓëxÖá¡¢yÖá·Ö±ð½»ÓÚµãE¡¢F£¬ÈôÏß¶ÎEFÓë¾ØÐÎABCDµÄ¡°ÃܾࡱÊÇ1£¬ÇóËüÃǵġ°Êè¾à¡±£»
£¨3£©Æ½ÃæÖ±½Ç×ø±êϵxOyÖÐÓÐÒ»¸öËıßÐÎKLMN£¬½«¾ØÐÎABCDÈÆµãOÐýתһÖÜ£¬ÔÚÐýת¹ý³ÌÖУ¬ËüÓëËıßÐÎKLMNµÄ¡°Êè¾à¡±µÄ×î´óֵΪ4$\sqrt{2}$+2£¬Ðýת¹ý³ÌÖУ¬ËüÓëËıßÐÎKLMNµÄ¡°ÃܾࡱµÄȡֵ·¶Î§ÊÇ6-4$\sqrt{2}$¡ÜÃܾà¡Ü8-4$\sqrt{2}$£®
·ÖÎö £¨1£©Ïß¶ÎADÓëBCµÄ¡°ÃܾࡱÊÇAB»òDCµÄ³¤¶È£»
£¨2£©ÏÈÇóµÃÖ±ÏßOAµÄ½âÎöʽ£¬¿ÉÖªÖ±ÏßEFÓëOA´¹Ö±£¬¹ÊµãCµ½Ö±ÏßEFµÄ¾àÀëΪ¡°Êè¾à¡±£»
£¨3£©¢ÙÈçͼµ±O¡¢K¡¢DÔÚÒ»ÌõÖ±ÏßÉÏʱ£¬ÃܾàÓÐ×îСֵ£¬µ±OK¡ÍADʱ£¬ÃܾàÓÐ×î´óÖµ£»
¢Úµ±ËıßÐÎKLMNΪÕý·½ÐÎÊ±Ãæ»ýÓÐ×î´óÖµ£®
½â´ð ½â£º£¨1£©Èçͼ1£º![]()
ÓÉ´¹ÏßµÄÐÔÖÊ¿ÉÖª£ºÏß¶ÎADÓëBCµÄ¡°ÃܾࡱÊÇAB»òDCµÄ³¤¶È£¬¹Ê¡°ÃܾࡱÊÇ6£®
ÔÚRt¡÷ADCÖУ¬AC=$\sqrt{A{D}^{2}+D{C}^{2}}$=$\sqrt{{6}^{2}+{8}^{2}}$=10£¬¡°Êè¾à¡±ÊÇ10£»
¹Ê´ð°¸Îª£º6£»10£»
£¨2£©ÈçÏÂͼ£º![]()
ÉèÖ±ÏßOBµÄ½âÎöʽΪy=kx£¬
½«x=3£¬y=4´úÈ뺯ÊýµÄ½âÎöʽµÃ4=3k£¬½âµÃk=$\frac{4}{3}$£¬
¡ßÖ±ÏßEFµÄ½âÎöʽΪy=-$\frac{3}{4}$x+b£¬
¡àÖ±ÏßOBºÍEFÏ໥´¹Ö±£®
¡ßEFÓë¾ØÐÎABCDµÄ¡°ÃܾࡱÊÇ1£¬
¡àµãDµ½EFµÄ¾àÀë×=10+1=11£¬¼´¡°Êè¾à¡±=11£»
£¨3£©¢Ùµ±KÔÚBDÉÏʱ£¬Èçͼ3£¬![]()
¾ØÐÎABCDÓëËıßÐÎKLMNµÄ¡°Êè¾à¡±ÎªKB=4$\sqrt{2}$+2£¬
¡àKD=BD-BK=10-£¨4$\sqrt{2}$+2£©=8-4$\sqrt{2}$£®¹Ê×î´óÃܾà=8-4$\sqrt{2}$£»
¢Úµ±OK¡ÍADʱ£¬Èçͼ4£¬![]()
¾ØÐÎABCDÓëËıßÐÎKLMNµÄ¡°ÃܾࡱÓÐ×îСֵ£¬
¡ß¾ØÐεĿíΪ6£¬
¡àOµ½ADµÄ¾àÀëΪ3£¬
ÓÖÓÉ¢Ù¿ÉÖªOK=OD-KD=5-£¨8-4$\sqrt{2}$£©=4$\sqrt{2}$-3£¬
ËùÒÔÃܾàµÄ×îСֵ=3-OK=3-£¨4$\sqrt{2}$-3£©=6-4$\sqrt{2}$£®
¹ÊÃܾàµÄ·¶Î§Îª£º6-4$\sqrt{2}$¡ÜÃܾà¡Ü8-4$\sqrt{2}$£¬
¹Ê´ð°¸Îª£º6-4$\sqrt{2}$¡ÜÃܾà¡Ü8-4$\sqrt{2}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊÇÒ»´Îº¯ÊýÓëÁ½µã¼äµÄ¾àÀëºÍµãµ½Ö±ÏߵľàÀëµÄÓ¦Óã¬Àí½â¶¨Ò壬¸ù¾ÝÌâÒ⻳öͼÐÎÊǽâÌâµÄ¹Ø¼ü£®ÌâÄ¿½ÏΪÐÂÓ±£¬ÄѶÈÊÊÖУ®
| A£® | x£¼-2 | B£® | -2£¼x£¼1 | C£® | x£¾1 | D£® | x£¼-2»òx£¾1 |