题目内容
20.| A. | 2 | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 由折叠可知,C′D=CD.根据在直角三角形中,一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°,由特殊角的三角函数选择答案.
解答 解:解:∵△CDE≌△C′DE,
∴C′D=CD.
∵AB=4,DE=8,
∴C′D=4.
∴sin∠C'ED=$\frac{C'D}{ED}$=$\frac{4}{8}$=$\frac{1}{2}$.
故选B.
点评 本题可以考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边.
练习册系列答案
相关题目
11.线段CD是由线段AB平移得到的,点A(4,7)的对应点为C(-1,4),则点B(-4,-1)的对应点D的坐标为( )
| A. | (-9,-4) | B. | (-1,-2) | C. | (2,9) | D. | (5,3) |
5.
如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠An-1AnBn-1(n>2)的度数为( )
| A. | $\frac{70}{{2}^{n}}$ | B. | $\frac{70}{{2}^{n+1}}$ | C. | $\frac{70}{{2}^{n-1}}$ | D. | $\frac{70}{{2}^{n+2}}$ |