ÌâÄ¿ÄÚÈÝ
£¨1£©ÇóÖ±ÏßBCÓëÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÈôµãMÊÇÅ×ÎïÏßÔÚÖ±ÏßBCÏ·½Í¼ÏóÉϵÄÒ»¶¯µã£¬¹ýµãM×÷MH¡ÎyÖá½»Ö±ÏßBCÓÚµãN£¬ÇóMNµÄ×î´óÖµ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬MNÈ¡µÃ×î´óֵʱ£¬ÈôµãPÊÇÅ×ÎïÏßÔÚÖ±ÏßBCÏ·½Í¼ÏóÉϵÄÒ»µã£¬ÇÒ¡÷ABPµÄÃæ»ýÓë¡÷ABNµÄÃæ»ýÏàµÈ£¬Ö±½Óд³öµãPµÄ×ø±ê£®
¿¼µã£º¶þ´Îº¯Êý×ÛºÏÌâ
רÌ⣺
·ÖÎö£º£¨1£©ÉèÖ±ÏßBCµÄ½âÎöʽΪy=mx+n£¬½«B£¨4£¬0£©£¬C£¨0£¬4£©Á½µãµÄ×ø±ê´úÈ룬ÔËÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³öÖ±ÏßBCµÄ½âÎöʽ£»Í¬Àí£¬½«B£¨4£¬0£©£¬C£¨0£¬4£©Á½µãµÄ×ø±ê´úÈëy=x2+bx+c£¬ÔËÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³öÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©MNµÄ³¤ÊÇÖ±ÏßBCµÄº¯ÊýÖµÓëÅ×ÎïÏߵĺ¯ÊýÖµµÄ²î£¬¾Ý´Ë¿ÉµÃ³öÒ»¸ö¹ØÓÚMNµÄ³¤ºÍMµãºá×ø±êµÄº¯Êý¹ØÏµÊ½£¬¸ù¾Ýº¯ÊýµÄÐÔÖʼ´¿ÉÇó³öMNµÄ×î´óÖµ£»
£¨3£©ÏÈÇó³öNµãµÄ×ø±ê£¬¸ù¾Ý¡÷ABPµÄÃæ»ýÓë¡÷ABNµÄÃæ»ýÏàµÈ£¬ËüÃǵĵ×ABÏàͬ£¬¸ßÓ¦¸ÃÏàͬÁгö·½³Ì£¬È»ºó½â·½³Ì×飬¼´¿ÉÇó³öµãPµÄ×ø±ê£®
£¨2£©MNµÄ³¤ÊÇÖ±ÏßBCµÄº¯ÊýÖµÓëÅ×ÎïÏߵĺ¯ÊýÖµµÄ²î£¬¾Ý´Ë¿ÉµÃ³öÒ»¸ö¹ØÓÚMNµÄ³¤ºÍMµãºá×ø±êµÄº¯Êý¹ØÏµÊ½£¬¸ù¾Ýº¯ÊýµÄÐÔÖʼ´¿ÉÇó³öMNµÄ×î´óÖµ£»
£¨3£©ÏÈÇó³öNµãµÄ×ø±ê£¬¸ù¾Ý¡÷ABPµÄÃæ»ýÓë¡÷ABNµÄÃæ»ýÏàµÈ£¬ËüÃǵĵ×ABÏàͬ£¬¸ßÓ¦¸ÃÏàͬÁгö·½³Ì£¬È»ºó½â·½³Ì×飬¼´¿ÉÇó³öµãPµÄ×ø±ê£®
½â´ð£º½â£º£¨1£©ÉèÖ±ÏßBCµÄ½âÎöʽΪy=mx+n£¬
½«B£¨4£¬0£©£¬C£¨0£¬4£©Á½µãµÄ×ø±ê´úÈëµÃ
£¬
½âµÃ
£®
ËùÒÔÖ±ÏßBCµÄ½âÎöʽΪy=-x+4£»
½«B£¨4£¬0£©£¬C£¨0£¬4£©Á½µãµÄ×ø±ê´úÈëy=x2+bx+c£¬
µÃ
£¬
½âµÃ
£®
ËùÒÔÅ×ÎïÏߵĽâÎöʽΪy=x2-5x+4£»
£¨2£©ÉèM£¨x£¬x2-5x+4£©£¨0£¼x£¼4£©£¬ÔòN£¨x£¬-x+4£©£¬
¡ßMN=£¨-x+4£©-£¨x2-5x+4£©=-x2+4x=-£¨x-2£©2+4£¬
¡àµ±x=2ʱ£¬MNÓÐ×î´óÖµ 4£»
£¨3£©¡ßMNÈ¡µÃ×î´óֵʱ£¬x=2£¬
¡à-x+4=-2+4=2£¬¼´N£¨2£¬2£©£®
¡ß¡÷ABPµÄÃæ»ýÓë¡÷ABNµÄÃæ»ýÏàµÈ£¬
¡à¡÷ABPµÄAB±ßÉϵĸߵÈÓÚ¡÷ABNµÄAB±ßÉϵĸߣ¬
¡àPµÄ×Ý×ø±êÊÇ2»ò-2£¬
½«y=2´úÈëy=x2-5x+4£»
µÃx1=
-
£¬x2=
+
£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£¬
½«y=-2´úÈëy=x2-5x+4£»
µÃ£ºx3=2£¬x4=3£¬
¹ÊµãPµÄ×ø±êΪP1£¨
£¬2£©»òP2£¨2£¬-2£©»òP3 £¨3£¬-2£©£»
½«B£¨4£¬0£©£¬C£¨0£¬4£©Á½µãµÄ×ø±ê´úÈëµÃ
|
½âµÃ
|
ËùÒÔÖ±ÏßBCµÄ½âÎöʽΪy=-x+4£»
½«B£¨4£¬0£©£¬C£¨0£¬4£©Á½µãµÄ×ø±ê´úÈëy=x2+bx+c£¬
µÃ
|
½âµÃ
|
ËùÒÔÅ×ÎïÏߵĽâÎöʽΪy=x2-5x+4£»
£¨2£©ÉèM£¨x£¬x2-5x+4£©£¨0£¼x£¼4£©£¬ÔòN£¨x£¬-x+4£©£¬
¡ßMN=£¨-x+4£©-£¨x2-5x+4£©=-x2+4x=-£¨x-2£©2+4£¬
¡àµ±x=2ʱ£¬MNÓÐ×î´óÖµ 4£»
£¨3£©¡ßMNÈ¡µÃ×î´óֵʱ£¬x=2£¬
¡à-x+4=-2+4=2£¬¼´N£¨2£¬2£©£®
¡ß¡÷ABPµÄÃæ»ýÓë¡÷ABNµÄÃæ»ýÏàµÈ£¬
¡à¡÷ABPµÄAB±ßÉϵĸߵÈÓÚ¡÷ABNµÄAB±ßÉϵĸߣ¬
¡àPµÄ×Ý×ø±êÊÇ2»ò-2£¬
½«y=2´úÈëy=x2-5x+4£»
µÃx1=
| 5 |
| 2 |
| ||
| 2 |
| 5 |
| 2 |
| ||
| 2 |
½«y=-2´úÈëy=x2-5x+4£»
µÃ£ºx3=2£¬x4=3£¬
¹ÊµãPµÄ×ø±êΪP1£¨
5-
| ||
| 2 |
µãÆÀ£º±¾ÌâÊǶþ´Îº¯ÊýµÄ×ÛºÏÌ⣬ÆäÖÐÉæ¼°µ½ÔËÓôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý¡¢¶þ´Îº¯ÊýµÄ½âÎöʽ£¬¶þ´Îº¯ÊýµÄÐÔÖÊ£¬Ãæ»ýÏàµÈÁ½¸öÈý½ÇÐÎͬµ×Ò»¶¨µÈ¸ßµÈ֪ʶµã£¬×ÛºÏÐÔ½ÏÇ¿£¬¿¼²éѧÉúÔËÓ÷½³Ì×é¡¢ÊýÐνáºÏµÄ˼Ïë·½·¨£®£¨2£©ÖÐŪÇåÏß¶ÎMN³¤¶ÈµÄº¯ÊýÒâÒåÊǹؼü£¬£¨3£©ÖÐÈ·¶¨PµÄ×Ý×ø±êÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
¹ØÓÚx·½³Ìk£¨x-1£©=4x-3kµÄ¸ùÊÇ-4£¬Ôòk+8kµÄÖµÊÇ£¨¡¡¡¡£©
| A¡¢-48 | B¡¢0 | C¡¢64 | D¡¢72 |