题目内容

19.阅读:
我们知道,|a|=$\left\{\begin{array}{l}{a,a≥0}\\{-a,a<0}\end{array}\right.$于是要解不等式|x-3|≤4,我们可以分两种情况去掉绝对值符号,转化为我们熟悉的不等式,按上述思路,我们有以下解法:
解:(1)当x-3≥0,即x≥3时:x-3≤4
解这个不等式,得:x≤7
由条件x≥3,有:3≤x≤7
(2)当x-3<0,即 x<3时,-(x-3)≤4
解这个不等式,得:x≥-1
由条件x<3,有:-1≤x<3
∴如图,综合(1)、(2)原不等式的解为:-1≤x≤7
根据以上思想,请探究完成下列2个小题:
(1)|x+1|≤2;
(2)|x-2|≥1.

分析 (1)分①x+1≥0,即x≥-1,②x+1<0,即x<-1,两种情况分别求解可得;
(2)分①x-2≥0,即x≥2,②x-2<0,即x<2,两种情况分别求解可得.

解答 解:(1)|x+1|≤2,
①当x+1≥0,即x≥-1时:x+1≤2,
解这个不等式,得:x≤1
由条件x≥-1,有:-1≤x≤1;
②当x+1<0,即 x<-1时:-(x+1)≤2
解这个不等式,得:x≥-3
由条件x<-1,有:-3≤x<-1    
∴综合①、②,原不等式的解为:-3≤x≤1.

(2)|x-2|≥1
①当x-2≥0,即x≥2时:x-2≥1
解这个不等式,得:x≥3
由条件x≥2,有:x≥3;
②当x-2<0,即 x<2时:-(x-2)≥1,
解这个不等式,得:x≤1,
由条件x<2,有:x≤1,
∴综合①、②,原不等式的解为:x≥3或x≤1.

点评 本题主要考查绝对值不等式的求解,熟练掌握绝对值的性质分类讨论是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网