题目内容

13.如图,已知点B、E、C、F在一条直线上,AC∥DE,AC=DE,∠A=∠D.
(1)求证:AB=DE;
(2)若BC=9,EC=5,求BF的长.

分析 (1)由条件证明△ABC≌△DFE即可求得AB=DF;
(2)由全等三角形的性质可得BC=FE,再利用线段的长和差可求得BF.

解答 (1)证明:
∵AC∥DE,
∴∠ACB=∠DEF,
在△ABC和△DFE中
$\left\{\begin{array}{l}{∠ACB=∠DEF}\\{AC=DE}\\{∠A=D}\end{array}\right.$
∴△ABC≌△DFE(ASA),
∴AB=DF;
(2)解:
∵△ABC≌△DFE,
∴BC=FE,
∴BC-EC=FE-EC,
∴EB=CF=BE-EC=9-5,
∴BF=BC+CF=9+4=13

点评 本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和性质(即全等三角形的对应边相等、对应角相等)是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网