题目内容
7.分析 由△ABC为等边三角形,得到AB=BC=AC,∠ABC=∠ACB=60°,由△ACD是等腰直角三角形,得到AC=CD,等量代换得到BC=CD,根据等腰三角形的性质得到∠CBD=∠CDB,根据三角形的内角和即可得到结论.
解答 解:∵△ABC为等边三角形,
∴AB=BC=AC,∠ABC=∠ACB=60°,
∵△ACD是等腰直角三角形,
∴AC=CD,
∴BC=CD,
∴∠CBD=∠CDB,
∵∠BCD=∠ACB+∠ACD=150°,
∴∠CBD=15°,
故答案为:15°.
点评 此题考查了等边三角形的性质,等腰三角形的判定和性质,等腰直角三角形的性质,熟练掌握等腰三角形的性质是解题的关键.
练习册系列答案
相关题目
19.
如图,点E、F、G、H分别在菱形ABCD的四条边上,BE=BF=DG=DH,连接EF,FG,GH,HE,得到四边形EFGH,若AB=a,∠A=60°,当四边形
EFGH的面积取得最大时,BE的长度为( )
EFGH的面积取得最大时,BE的长度为( )
| A. | $\frac{\sqrt{3}a}{3}$ | B. | $\frac{\sqrt{2}a}{2}$ | C. | $\frac{a}{2}$ | D. | $\frac{a}{3}$ |