题目内容
如图,AB∥CD,P为定点,E、F分别是AB、CD上的动点.

(1)求证:∠P=∠BEP+∠PFD;
(2)若M为CD上一点,如图2,∠FMN=∠BEP,且MN交PF于N.试说明∠EPF与∠PNM关系,并证明你的结论;
(3)移动E、F使得∠EPF=90°,如图3,作∠PEG=∠BEP,求∠AEG与∠PFD度数的比值.
(1)求证:∠P=∠BEP+∠PFD;
(2)若M为CD上一点,如图2,∠FMN=∠BEP,且MN交PF于N.试说明∠EPF与∠PNM关系,并证明你的结论;
(3)移动E、F使得∠EPF=90°,如图3,作∠PEG=∠BEP,求∠AEG与∠PFD度数的比值.
考点:平行线的性质
专题:几何图形问题,证明题
分析:(1)如图1,过点P作PG∥AB,根据平行线的性质进行证明;
(2)利用(1)中的结果和三角形外角定理可以推知∠EPF=∠PNM;
(3)利用(1)中的结论得到∠1+∠2=90°,结合已知条件∠PEG=∠BEP,即∠1=∠3得到∠4=180°-2∠1,易求∠AEG与∠PFD度数的比值.
(2)利用(1)中的结果和三角形外角定理可以推知∠EPF=∠PNM;
(3)利用(1)中的结论得到∠1+∠2=90°,结合已知条件∠PEG=∠BEP,即∠1=∠3得到∠4=180°-2∠1,易求∠AEG与∠PFD度数的比值.
解答:
(1)证明:如图1,过点P作PG∥AB.则∠1=∠BEP.
又∵AB∥CD,
∴PG∥CD,
∴∠2=∠PFD,
∴∠EPF=∠1+∠2=∠BEP+∠PFD,即∠EPF=∠BEP+∠PFD;
(2)∠EPF=∠PNM.理由如下:
由(1)知,∠EPF=∠BEP+∠PFD.
如图2,∵∠FMN=∠BEP,
∴∠EPF=∠FMN+∠PFD.
又∵∠PNM=∠FMN+∠PFD.
∴∠EPF=∠PNM;
(3)如图,∵由(1)知∠1+∠2=90°.
∴∠1=90°-∠2.
又∵∠1=∠3,
∴∠4=180°-2∠1=2∠2,
∴∠4:∠2=2:1.即∠AEG与∠PFD度数的比值为2:1.
又∵AB∥CD,
∴PG∥CD,
∴∠2=∠PFD,
∴∠EPF=∠1+∠2=∠BEP+∠PFD,即∠EPF=∠BEP+∠PFD;
(2)∠EPF=∠PNM.理由如下:
由(1)知,∠EPF=∠BEP+∠PFD.
如图2,∵∠FMN=∠BEP,
∴∠EPF=∠FMN+∠PFD.
又∵∠PNM=∠FMN+∠PFD.
∴∠EPF=∠PNM;
(3)如图,∵由(1)知∠1+∠2=90°.
∴∠1=90°-∠2.
又∵∠1=∠3,
∴∠4=180°-2∠1=2∠2,
∴∠4:∠2=2:1.即∠AEG与∠PFD度数的比值为2:1.
点评:本题考查了平行线的性质.解答(2)、(3)题时,可以直接利用(1)的结论.
练习册系列答案
相关题目