题目内容

如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,若∠A=80°,则∠BOC=
 
考点:三角形内角和定理
专题:
分析:先根据三角形内角和定理求出∠ABC+∠ACB的度数,再由角平分线的性质得出∠OBC+∠OCB的度数,由三角形内角和定理即可得出结论.
解答:解:∵在△ABC中,∠A=80°,
∴∠ABC+∠ACB=180°-80°=100°,
∵∠ABC和∠ACB的平分线交于O点,
∴∠OBC+∠OCB=
1
2
(∠ABC+∠ACB)=
1
2
×100°=50°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-50°=130°.
故答案为:130°.
点评:本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网