题目内容
17.如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行.直线l:y=x-3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图1中的点A的坐标为(1,0),图2中b的值为5$\sqrt{2}$.分析 先根据△AEF为等腰直角三角形,可得直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,再根据BD的长即可得到b的值.
解答
解:直线y=x-3中,令y=0,得x=3;令x=0,得y=-3,
即直线y=x-3与坐标轴围成的△AEF为等腰直角三角形,
∴直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,
由图2可得,t=2时,直线l经过点A,
∴AO=3-2×1=1,
∴A(1,0),
由图2可得,t=12时,直线l经过点C,
∴当t=$\frac{12-2}{2}$+2=7时,直线l经过B,D两点,
∴AD=(7-2)×1=5,
∴等腰Rt△ABD中,BD=5$\sqrt{2}$,
即当a=7时,b=5$\sqrt{2}$.
故答案为:(1,0),5$\sqrt{2}$.
点评 本题主要考查了动点问题的函数图象,用图象解决问题时,要理清图象的含义即会识图.解决问题的关键是掌握正方形的性质以及平移的性质.
练习册系列答案
相关题目
2.垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分. 运动员甲测试成绩表

(1)写出运动员甲测试成绩的众数和中位数;
(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)
| 测试序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 成绩(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)写出运动员甲测试成绩的众数和中位数;
(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)