题目内容
已知a+| 1 |
| a |
| 1 |
| a4 |
| 1 |
| a4 |
分析:已知a+
=-2,两边分别平方可求得a2+
,再进行求解即可得出答案.
| 1 |
| a |
| 1 |
| a2 |
解答:解:∵a+
=-2,两边平方得:a2+
=2,
∴对其两边进行平方得;a4+
=2,
∵a4-
=(a2-
)(a2+
)=(a+
)(a-
)×2,
∵(a-
)2=a2+
-2=2-2=0,
∴a-
=0,
故(a+
)(a-
)×2=0.
故答案为:2,0.
| 1 |
| a |
| 1 |
| a2 |
∴对其两边进行平方得;a4+
| 1 |
| a4 |
∵a4-
| 1 |
| a4 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a |
| 1 |
| a |
∵(a-
| 1 |
| a |
| 1 |
| a2 |
∴a-
| 1 |
| a |
故(a+
| 1 |
| a |
| 1 |
| a |
故答案为:2,0.
点评:本题考查了完全平方公式,难度适中,关键是熟练灵活运用完全平方公式进行解题.
练习册系列答案
相关题目