题目内容
1.方程组$\left\{{\begin{array}{l}{{a_1}x+{b_1}y={c_1}}\\{{a_2}x+{b_2}y={c_2}}\end{array}}\right.$的解为$\left\{{\begin{array}{l}{x=4}\\{y=6}\end{array}}\right.$,则方程组$\left\{{\begin{array}{l}{4{a_1}x+3{b_1}y=5{c_1}}\\{4{a_2}x+3{b_2}y=5{c_2}}\end{array}}\right.$的解为( )| A. | $\left\{{\begin{array}{l}{x=4}\\{y=6}\end{array}}\right.$ | B. | $\left\{{\begin{array}{l}{x=5}\\{y=6}\end{array}}\right.$ | C. | $\left\{{\begin{array}{l}{x=5}\\{y=10}\end{array}}\right.$ | D. | $\left\{{\begin{array}{l}{x=10}\\{y=15}\end{array}}\right.$ |
分析 先根据方程组$\left\{{\begin{array}{l}{{a_1}x+{b_1}y={c_1}}\\{{a_2}x+{b_2}y={c_2}}\end{array}}\right.$的解为$\left\{{\begin{array}{l}{x=4}\\{y=6}\end{array}}\right.$,得到$\left\{\begin{array}{l}{20{a}_{1}+30{b}_{1}=5{c}_{1}}\\{20{a}_{2}+30{b}_{2}=5{c}_{2}}\end{array}\right.$,进而得到$\left\{\begin{array}{l}{20=4x}\\{30=3y}\end{array}\right.$,求得$\left\{\begin{array}{l}{x=5}\\{y=10}\end{array}\right.$.
解答 解:∵方程组$\left\{{\begin{array}{l}{{a_1}x+{b_1}y={c_1}}\\{{a_2}x+{b_2}y={c_2}}\end{array}}\right.$的解为$\left\{{\begin{array}{l}{x=4}\\{y=6}\end{array}}\right.$,
∴$\left\{\begin{array}{l}{4{a}_{1}+6{b}_{1}={c}_{1}}\\{4{a}_{2}+6{b}_{2}={c}_{2}}\end{array}\right.$,即$\left\{\begin{array}{l}{20{a}_{1}+30{b}_{1}=5{c}_{1}}\\{20{a}_{2}+30{b}_{2}=5{c}_{2}}\end{array}\right.$,
又∵方程组$\left\{{\begin{array}{l}{4{a_1}x+3{b_1}y=5{c_1}}\\{4{a_2}x+3{b_2}y=5{c_2}}\end{array}}\right.$,
∴$\left\{\begin{array}{l}{20=4x}\\{30=3y}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=5}\\{y=10}\end{array}\right.$,
故选:C.
点评 本题主要考查了二元一次方程组的解,解题时注意:当遇到有关二元一次方程组的解的问题时,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.
| A. | (a+2)2=a2+4 | B. | 2x+3y=5xy | C. | x6÷x3=x2 | D. | (-x3)2=x6 |