题目内容

1.方程组$\left\{{\begin{array}{l}{{a_1}x+{b_1}y={c_1}}\\{{a_2}x+{b_2}y={c_2}}\end{array}}\right.$的解为$\left\{{\begin{array}{l}{x=4}\\{y=6}\end{array}}\right.$,则方程组$\left\{{\begin{array}{l}{4{a_1}x+3{b_1}y=5{c_1}}\\{4{a_2}x+3{b_2}y=5{c_2}}\end{array}}\right.$的解为(  )
A.$\left\{{\begin{array}{l}{x=4}\\{y=6}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x=5}\\{y=6}\end{array}}\right.$C.$\left\{{\begin{array}{l}{x=5}\\{y=10}\end{array}}\right.$D.$\left\{{\begin{array}{l}{x=10}\\{y=15}\end{array}}\right.$

分析 先根据方程组$\left\{{\begin{array}{l}{{a_1}x+{b_1}y={c_1}}\\{{a_2}x+{b_2}y={c_2}}\end{array}}\right.$的解为$\left\{{\begin{array}{l}{x=4}\\{y=6}\end{array}}\right.$,得到$\left\{\begin{array}{l}{20{a}_{1}+30{b}_{1}=5{c}_{1}}\\{20{a}_{2}+30{b}_{2}=5{c}_{2}}\end{array}\right.$,进而得到$\left\{\begin{array}{l}{20=4x}\\{30=3y}\end{array}\right.$,求得$\left\{\begin{array}{l}{x=5}\\{y=10}\end{array}\right.$.

解答 解:∵方程组$\left\{{\begin{array}{l}{{a_1}x+{b_1}y={c_1}}\\{{a_2}x+{b_2}y={c_2}}\end{array}}\right.$的解为$\left\{{\begin{array}{l}{x=4}\\{y=6}\end{array}}\right.$,
∴$\left\{\begin{array}{l}{4{a}_{1}+6{b}_{1}={c}_{1}}\\{4{a}_{2}+6{b}_{2}={c}_{2}}\end{array}\right.$,即$\left\{\begin{array}{l}{20{a}_{1}+30{b}_{1}=5{c}_{1}}\\{20{a}_{2}+30{b}_{2}=5{c}_{2}}\end{array}\right.$,
又∵方程组$\left\{{\begin{array}{l}{4{a_1}x+3{b_1}y=5{c_1}}\\{4{a_2}x+3{b_2}y=5{c_2}}\end{array}}\right.$,
∴$\left\{\begin{array}{l}{20=4x}\\{30=3y}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=5}\\{y=10}\end{array}\right.$,
故选:C.

点评 本题主要考查了二元一次方程组的解,解题时注意:当遇到有关二元一次方程组的解的问题时,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网