题目内容
15.| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 ①由抛物线的开口方向向下,与y轴交点在负半轴,对称轴在y轴右侧,确定出a,b及c的正负,即可对于abc的正负作出判断;
②函数图象的对称轴为:x=-$\frac{b}{2a}$=1,所以b=-2a,即2a+b=0;
③根据抛物线与x轴的交点即可求得抛物线的对称轴,然后把x=3代入方程即可求得相应的y的符号;
④由图象得到函数值小于0时,x的范围即可作出判断;
⑤由图象得到当x<0时,y随x的变化而变化的趋势.
解答 解:根据图示知,抛物线开口方向向上,抛物线与y轴交与负半轴,对称轴在y轴右侧,则a>0,c<0,b<0,所以abc>0.故①错误;
根据图象得对称轴x=1,即-$\frac{b}{2a}$=1,所以b=-2a,即2a+b=0,故②正确;
当x=3时,y=0,即9a+3b+c=0.故③错误;
根据图示知,当-1<x<3时,y<,故④正确;
根据图示知,当x<0时,y随x的增大而减小,故⑤正确;
故选C.
点评 本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
练习册系列答案
相关题目
4.
如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sinB的值等于( )
| A. | $\frac{4}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{5}$ |