题目内容

11.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BF平分∠ABC,交AD于E,若AE=13,求AF的长度.

分析 由∠BAC=90°,于是得到∠ABF+∠AFB=90°,根据垂直的定义得到∠ADB=90°,于是得到∠EBD+∠BED=90°,根据角平分线的定义得到∠ABF=∠EBD,等量代换得到∠AFB=∠BED,∠AEF=∠AFB,根据等腰三角形的判定定理即可得到结论.

解答 解:∵∠BAC=90°,
∴∠ABF+∠AFB=90°,
又∵AD⊥BC,
∴∠ADB=90°,
∴∠EBD+∠BED=90°,
又∵BF平分∠ABC,
∴∠ABF=∠EBD,
∴∠AFB=∠BED,
又∵∠AEF=∠BED,
∴∠AEF=∠AFB,
∴AE=AF,
∵AE=13,
∴AF=13.

点评 本题考查了等腰三角形的判定和性质,角平分线的定义,熟练掌握等腰三角形的性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网